# Síntese e Caracterização de Derivados Anfifílicos Quaternários de Quitosana

Mirelle Takaki<sup>1</sup>(IC)\*, Rafael O. Pedro<sup>1</sup>(PG), Marcio J. Tiera<sup>1</sup>(PQ), Vera A. O. Tiera<sup>1</sup>(PQ).

<sup>1</sup>Departamento de Química e Ciências Ambientais - Instituto de Biociências, Letras e Ciências Exatas Campus de São José do Rio Preto - UNESP.

E-mail: mirelle takaki@yahoo.com.br

Palavras Chave: Quitosana, Quitosana modificada, Biofungicida.

## Introdução

A quitosana é um heteropolissacarídeo obtido a partir da desacetilação da quitina, o segundo polímero mais abundante na natureza depois da celulose, extraída, principalmente, das carapaças e crustáceos1. de Dentre exoesqueletos propriedades naturais da quitosana, sua capacidade antifúngica é de grande interesse, possibilitando que este polímero seja utilizado na melhoria da qualidade e segurança alimentar<sup>2</sup>. Uma vez que possui ação fungistática, este biopolímero dificulta o crescimento de fungos, inibindo eficientemente a germinação de esporos e de tubos de elongação<sup>3</sup>. Os grupos amino e hidroxila livres presentes na estrutura da quitosana são bastante suscetíveis a ataques nucleofílicos e os derivados obtidos podem atividade fungicida crescente<sup>1</sup>. apresentar presente trabalho apresenta а síntese caracterização de derivados anfifílicos catiônicos de quitosana para utilização como biofungicidas.

### Resultados e Discussão

Os derivados de quitosana foram preparados a partir de quitosana comercial desacetilada em meio alcalino. desacetilada Α amostra (QD) caracterizada por potenciometria e o grau de desacetilação obtido foi de 99%. Os derivados quaternários (QM) foram obtidos pela reação de substituição utilizando-se brometo bromopentiltrimetilamônio. Posteriormente, foram inseridos na quitosana quaternizada conteúdos crescentes do grupo hidrofóbico utilizando-se a reação de aminação redutiva com dodecilaldeído (QM5, QM11 e QM30). Os derivados de guitosana foram caracterizados por Ressonância Magnética Nuclear de Prótons (RMN<sup>1</sup>H). Os graus de substituição foram determinados utilizando-se as integrações do próton anomérico da quitosana, dos hidrogênios do grupo metileno pentiltrimetilamônio e do grupo metila do grupo dodecil (Figura 1). A massa molecular de QD e de QM foi determinada por viscosimetria. Os resultados obtidos estão apresentados na Tabela 1.

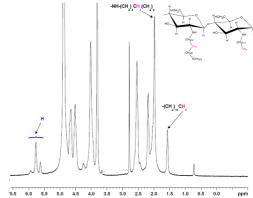



Figura 1. Espectro de RMN do derivado QM30 de quitosana.

**Tabela 1.** Caracterização dos derivados de quitosana obtidos.

| Polímero | Mv¹<br>(kg/mol) | GS Pentil <sup>2</sup> (%) | GS Dodecil <sup>3</sup> (%) |
|----------|-----------------|----------------------------|-----------------------------|
| QD       | 18,29           | -                          | -                           |
| QM       | 5,55            | 74,1                       | -                           |
| QM5      | -               |                            | 4,81                        |
| QM11     | -               |                            | 11,0                        |
| QM30     | -               |                            | 27,6                        |

<sup>1</sup>Massa molecular viscosimétrica. <sup>2</sup>Grau de substituição do pentiltrimetilamônio. <sup>3</sup>Grau de substituição do grupo dodecil.

#### Conclusões

Os resultados obtidos neste trabalho permitem concluir que o método de desacetilação é eficiente e permite aumentar satisfatoriamente o grau de desacetilação da quitosana comercial. Os procedimentos empregados para a modificação da estrutura da quitosana são eficientes, permitindo a obtenção de derivados com elevados graus de substituição. A reação para obtenção dos derivados quaternários contribui para a degradação da cadeia polimérica da quitosana.

#### Agradecimentos

**FAPESP** 

IBILCE/UNESP

Gonsalves, A. A.; Araújo, C. R. M.; Soares, N. A.; Goulart, M. O. F. e Abreu F. C. *Química Nova.* **2011**, 34, 1215-1223.

<sup>2</sup>Kim, K. W.; Min, B. J.; Kim, Y. T.; Kimmel, R. M.; Cooksey, K. e Park S. I. LWT - Food Science and Technology. **2011**, 44, 565-569.

<sup>3</sup>Goy, R. C.; Britto, D.; Assis, O. B. G. *Polímeros: Ciência e Tecnologia.* **2009**, 19, 241-247.