Síntese, atividade antitumoral e antimicrobiana de 3-azalactonas- β -carbolinas.

Franciele Cristina Savariz (PG),¹ Mary Ann Foglio (PQ)², Ana Lucia T. G. Ruiz² (PQ)², Mauricio Ferreira da Rosa (PQ)³, João Ernesto de Carvalho (PQ)², Marta C. T. Duarte (PQ)² and Maria Helena Sarragiotto (PQ)¹.

*mhsarragiotto@uem.br

Palavras Chave: β -carbolina, azalactonas, 1,3-oxazol-5-oxo, atividade antitumoral, atividade antimicrobiana.

Introdução

Trabalhos anteriores de nosso grupo de pesquisa demonstraram que a introdução de substituintes apropriados na posição-3 do esqueleto β -carbolínico resultou em compostos com atividade antimicrobiana e antitumoral 1,2,3 .

Relatos da literatura apontam que compostos contendo a unidade azalactona apresentam diversas atividades farmacológicas, incluindo antimicrobiana e anti-hipertensivo⁴.

Em continuidade aos nossos estudos e com o intuito de obter derivados β -carbolínicos com maior atividade antitumoral e antimicrobiana, neste trabalho sintetizou-se e avaliou-se a atividade biológica de uma série de derivados contendo o grupo azalactona (5-oxo-1,3-oxazolil) substituído, ligado ao C-3 do núcleo β -carbolínico,

Resultados e Discussão

Os compostos 1-fenilssubstituídos 3-carbometóxi- β -carbolínicos (4a-c) foram preparados a partir do L-triptofano comercial via reação de Pictet-Spengler com diferentes aldeídos aromáticos. A hidrólise básica de 4a-c, seguida da reação dos intermediários obtidos 5a-c com glicil etil ester e posterior hidrólise de 6a-c forneceu os derivados 7a-c. A reação de Plöchl-Erlenmeyer de 7a-c com aldeídos aromáticos levou à formação das 1-fenilssubstituídas 3-azalactonas β -carbolinas (8-11) (Esquema 1).

Os compostos foram caracterizados através dos dados de IV, RMN ¹H e RMN ¹³C/DEPT/HSQC e massas de alta resolução.

A formação dos derivados **8-11** é evidente nos espectros de RMNH¹ devido à presença de um sinal (simpleto) na região de $\delta_{\rm H}$ 7,00-7,56, correspondente ao hidrogênio do carbono metilênico, correlacionado ao sinal de carbono na região de $\delta_{\rm C}$ 126,0-131,0, no espectro de HSQC. Os carbonos da carbonila e iminico da unidade 5-oxo-1,3-oxazol aparecem em $\delta_{\rm C}$ 164,0 e 168,0, respectivamente. No espectro de IV foi observada uma banda de absorção na região de 1780-1816 cm⁻¹, característica do grupo carbonila.

Os compostos **8-11** foram avaliados *in vitro* frente às culturas de células tumorais de glioma (U251), melanoma (UACC-62), mama (MCF7), próstata (PC-3) e ovário (OVCAR-03).

O composto **11** demonstrou atividade antitumoral 35^a Reunião Anual da Sociedade Brasileira de Química

frente à todas as linhagens de células tumorais testadas, com valores de IC_{50} de 0,48 e 1,50 µM, frente as linhagens de glioma (U251) e próstata (PC-3), respectivamente.

Potente atividade frente às células tumorais de glioma (U251) (IC $_{50}$ =0,35 μ M) e ovário (OVCAR-03) (IC $_{50}$ =2,18) μ M, foi observada para o composto **9**. Os compostos **8-11** foram inativos (IC $_{50}$ maior que 100 μ g.mL $^{-1}$) frente às bactérias e fungos testados.

COOCH₃

$$NH_{2}$$

$$1$$

$$2$$

$$3 = c$$

$$R^{1}$$

$$A = c$$

$$A$$

Esquema 1. Reagentes e condições: (a) CH_3OH , H_2SO_4 , refluxo, 48 h; 95% (b) Aldeídos (R^1COH), TFA, CH_2CI_2 , refluxo, 48 h; 75-95% (c) S_8 , xileno, refluxo, 48 h; 75-85% (d) NaOH, CH_3OH : H_2O , refluxo, 24 h and HCl 5M, 0^0C , 3h; 85-90% (e) HCl.NH $_2CH_2COOCH_2CH_3$, DMAP, DCC, piridina, CH_2CI_2 , t.a., 48 h; 45–56% (f) Na $_2CO_3$, CH_3OH : H_2O , refluxo, 24h e HCl 5M, 0^0C , 3h; 68-77%. g) Aldeído (R^1COH), CH_3COONa , ($CH_3CO)O_2$, 80^0C , 24h; 30-42%.

Conclusões

Neste trabalho foi realizada a síntese e avaliação das atividades antitumoral e antimicrobiana de 4 derivados 1-fenilssubstituídos 3-azalactona- β -carbolínicos. Os derivados **9** e **11** demonstraram potente atividade frente às células tumorais de glioma (U251) e ovário (OVCAR-03) com IC₅₀ na faixa de 2,18-0,35 μ M.

Agradecimentos

Fundação Araucária, CAPES e CNPq.

¹Departamento de Química, Universidade Estadual de Maringá, Maringá, PR. ²CPQBA, Universidade Estadual de Campinas, Campinas, SP. ³Química, Universidade Estadual do Oeste do Paraná, Toledo, PR.

¹Formagio, A. S. N.; et. al. *Bioorg. Med. Chem.* 2008, 16, 9660.

²Barbosa, V.A.; et. al. *Bioorg. Med. Chem.* 2011, 19, 6400.

³Savariz, F.C.; et. al. *J. Braz. Chem. Soc.*. 2010, 21, 288.

⁴Conway, P. A.; et. al.; Tetrahedron. 2009, 65, 2935.