Esterificação do linalol catalisada por heteropoliácido H₃PW₂₀O₄₀: obtenção de produtos de química fina

Rafaela A. Mesquita¹ (IC), Vinícius V. Costa¹ (PG), Kelly A. da S. Rocha² (PQ), Ivan V. Kozhevnikov (PQ)³ Elena V. Goussevskaia¹ (PQ)* **elena @ufmq.br*

¹Departamento de Química, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil.

²Departamento de Química, Universidade Federal de Ouro Preto, 35400-000, Ouro Preto, MG, Brasil.

³Departament of Chemistry, University of Liverpool, Liverpool L69 7ZD.

Palavras Chave: Catálise ácida, Heteropoliácido, Linalol.

Introdução

Compostos terpênicos são substâncias naturais, de origem vegetal, capazes de serem transformadas em compostos de grande interesse para a indústria de química fina. O linalol (1) é um derivado de terpeno encontrado em plantas e óleos, por exemplo, no manjericão¹.

Reações de isomerização de 1 são largamente estudadas para obtenção de substâncias de maior valor agregado que podem ser utilizadas como fragrâncias². Em meio ácido 1 pode gerar diversos produtos, dentre eles, seus isômeros. Entretanto, na presença de ácido acético observa-se a formação de acetatos desses isômeros, tais como os acetatos do geraniol (2) e do α-terpineol (3) (Figura 1).

Figura 1: Linalol e seus produtos reacionais.

Os heteropoliácidos (HPAs), em especial, os da série de Keggin tem sido aplicados como catalisadores ácidos em eficientes processos limpos e seletivos tanto homogêneos quanto heterogêneos³.

O objetivo do trabalho é estudar o efeito da concentração de ácido acético na formação de ésteres do linalol na presença do HPA $\rm H_3PW_{20}O_{40}$.

Resultados e Discussão

Na ausência do catalisador, **1** permanece estável mesmo em meio contendo ácido acético (AcOH). (Tabela 1, exp.1).

Na ausência de AcOH observou-se somente a formação do α -terpineol (4), produto da isomerização de 1 com uma seletividade de 28% a uma conversão de 69% do substrato (exp. 2).

O aumento da concentração inicial de AcOH utilizada favorece a conversão de 1 em seus três produtos principais e o seu aumento

gradativo favorece a seletividade dos acetatos 2 e 3. Observa-se também que a seletividade de 4 diminui com esse aumento da concentração de AcOH devido ao favorecimento do ataque nucleofílico pelo íon acetato.

O balanço de massa da reação torna-se completo quando se calcula a seletividade de produtos de isomerização do limoneno, porém são baixos os valores e não levados em consideração neste trabalho.

Tabela 1. Efeitos da concentração de ácido acético na conversão de linalol e na seletividade de seus produtos principais

Exp. ^a	[AcOH]	Conversão	Seletividade		
			2	3	4
1 ^b	1,5	1%	-	-	-
2	-	44%	-	-	32%
3	0,5	57%	11%	13%	26%
4	1	70%	18%	16%	22%
5	1,5	75%	24%	22%	19%
6	3	88%	29%	25%	14%

^aCondições: Solvente: Isoctano; [Linalol]: 0,15M; [dodecano]: 0,1M (padrão interno); HPA: 10% p/p; Temperatura: 40°C, Tempo de reação: 15 minutos; Volume reacional: 5,0 mL.

Conclusões

- Observou-se que o heteropoliácido se mostrou eficiente na esterificação de **1**.
- O aumento da concentração de AcOH favorece a conversão e melhora a seletividade dos acetatos.
- A reação sem a adição de AcOH é apenas de isomerização de **1**.

Agradecimentos

CNPq, FAPEMIG, CAPES e DQ-UFMG,

35ª Reunião Anual da Sociedade Brasileira de Química

^b Reação sem heteropoliácido.

¹ Speziali, M. G.; et. al Organometallics **2007**, 26, 4003-4009.

² Semikolenov, V. A.; *et. al* Journal of Molecular Catalysis A: Chemical **2003**, 204-205, 201-210.

³ Sell, C.; The Chemistry of Fragrances: From Perfumer to Consumer, second Ed, **2006**, 52-88.