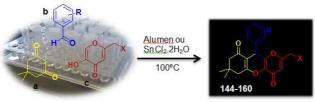
Química Combinatória a partir de Síntese Multicomponente de diidropirano[3,2-b]cromenodionas.

Edikarlos M. Brasil^{1,2} (PG), Fabiana G. Nascimento¹ (PG), Vera L. Eifler-Lima¹ (PQ), Cláudio N. Alves² (PQ)

¹Laboratório de Síntese Orgânica Medicinal, LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Porto Alegre, RS, Email: veraeifler@ufrgs.br; ²Curso de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Av. Augusto Corrêa 01.66075-110. Belém, PA, Brasil.

Palavras Chave: ácido kójico, reação multicomponente, química combinatória.


Introdução

As diidropirano[3,2-b]cromenodionas(DHPC) são heterocíclicas análogas moléculas benzopiranos. A metodologia sintética utilizada para obter as DHPC ocorre através de reação (RMC)^{1,2} multicomponente onde componentes é o ácido kójico, o qual é um metabólito produzido principalmente por fungos do gênero aspergillus. Este produto natural apresenta farmacológico, variado perfil antimelanogênico, antioxidante, anti-inflamatório, antitumoral, antileishmanicida. Além disso, seus derivados têm despertado grande interesse como potentes anti-HIV e anti-convulsivantes.

Nosso grupo de pesquisa está investigando a ação antichagásica de derivados e análogos do ácido kójico. Nesse sentido, uma quimioteca de DHPC foi preparada, *via* RMC, por química combinatória, onde uma coleção de moléculas é sintetizada simultaneamente.

Resultados e Discussão

O protocolo partiu de proporções equivalentes de dimedona(a), aldeídos aromáticos(b) e ácido kójico(ou ácido clorokójico)(c) (figura 1). As reações foram catalisadas por sulfato duplo de alumínio e potássio 10%(alumen) a 100°C na ausência de solvente durante 1h. Os rendimentos das reações

foi de bom a excelente (tabela 1).

Figura 1. RMC empregando química combinatória.

No sentido de explorar outro protocolo, observou-se que o ácido de Lewis $SnCl_2.2H_2O$ a 10% foi também eficiente na síntese do produto **144** (rendimento 80%, 40min a 100°C).

Alternativamente, a mesma reação foi realizada no reator de micro-ondas, usando SnCl₂.2H₂O a 10% e temperatura de 100°C, observando-se ocorrência reacional em 1 min (rendimentos 70 a 85%).

Tabela 1. Síntese das DHPC 144-160.

Ent.	Χ	R	Prod.(LaSOM*)	Rend.(%)
1	ОН	Н	144	92
2	ОН	3-OH	145	75
3	ОН	4-OH	146	82
4	ОН	2-MeO	147	80
5	ОН	3-MeO	148	78
6	ОН	4-MeO	149	85
7	ОН	4-CN	150	90
8	ОН	2-F	151	97
9	ОН	3-F	152	75
10	ОН	4-F	153	90
11	ОН	$2-NO_2$	154	
12	ОН	$3-NO_2$	155	93
13	ОН	$4-NO_2$	156	90
14	CI	Н	157	89
15	CI	2-F	158	95
16	CI	3-F	159	87
17	CI	4-F	160	85

*LaSOM – Laboratório de Síntese Orgânica Medicinal

Conclusões

A quimioteca de DHPC foi obtida empregando química combinatoria com rendimento das reações na faixa de 75-97%. O produto **154** não foi isolado. A reação de formação do produto **144**, na presença de SnCl₂.2H₂O, especialmente diante das microondas, dá possibilidade prática de sintetizar uma coleção de moléculas DHPC num tempo inferior a 10min.

Agradecimentos

Ao CNPq pela bolsa de mestrado e PQ concedidas, pelo financiamento CNPq/Universal e ao prof. Dr. Dennis Russowsky pelas informações sobre RMC.

¹ Reddy, S.V.B.; Reddy, R.M.; Narasimhulu, G.; Yadav, S.J. *Tetrahedron Lett.* **2010**, *51*, 5677.

² Wu, Q.L.; Li, L.W.; Yan, L.F. J. Braz. Chem. Soc. 2011, 22, 2202-2205.