Síntese e avaliação da citotoxicidade de novos sais de Zincke e um sal de piridínio quiral.

Matheus V. Machado¹*(IC), Giseli Cenzi¹(PG), Sarah Capelupe Simões¹(IC), Gustavo H. R. Viana¹(PQ), Rosemeire B. Alves²(PQ), Rossimiriam P. de Freitas²(PQ), Fernando P. Varotti¹(PQ).

Palavras chave: Sais de Zincke, Sais de piridínio, citotoxicidade.

Introdução

Os sais de Zincke são compostos altamente eletrofílicos que podem ser facilmente preparados por meio de uma reação de substituição nucleofílica aromática entre um derivado piridínico e o 1-cloro-2,4-dinitrobenzeno¹. Esses compostos quaternários de amônio possuem diversas aplicações e propriedades tais como versatilidade em transformações químicas e amplo espectro de atividades biológicas².

Neste trabalho descrevemos a síntese e avaliação da citotoxicidade de uma série de novos sais de Zincke derivados do 3-piridinopropanol e um sal de piridínio quiral. O estudo dos sais de Zincke é particularmente interessante, pois por serem utilizados tradicionalmente como intermediários de síntese na preparação de sais de piridínio foram pouco estudados do ponto de vista biológico.

Resultados e Discussão

Primeiramente realizou-se a mesilação de alcoóis de cadeias de diferentes tamanhos, e isto levou aos derivados 2a e 2c (Esquema 1). A eterificação clássica de Willianson do 3-piridinopropanol comercial com os derivados mesilados e o 1-iodopentano 2b em condições de transferência de fase resultou na formação dos éteres 3a-c. A reação entre cada um dos éteres obtidos na etapa anterior além do próprio 3-piridinopropanol com o 1-cloro-2,4-dinitrobenzeno levou a formação dos sais de Zincke 4a-c e 5.

Reagentes e condições: i) MsCl, Et_3N , CH_2Cl_2 , t.a., 24h, 78-94%; ii) NaOH, $Bu_4N^+Br^-$, H_2O/Et_2O , t.a., 72h, 15-69%; iii) 1-cloro-2,4-dinitrobenzeno, MeOH, Δ , 48h, 65-95%; iv) 1-cloro-2,4-dinitrobenzeno, MeOH, Δ , 16h, 15%.

Esquema 1. Síntese dos novos sais de Zincke.

Finalmente, a reação de substituição nucleofílica aromática entre a 3-picolina **6** e o 1-cloro-2,4-dinitrobenzeno resultou na formação do sal de 35ª Reunião Anual da Sociedade Brasileira de Química

Zincke 7 que posteriormente foi convertido em seu respectivo sal de piridínio quiral 9 pelo tratamento deste com com o L-fenilglicinol 8 (Esquema 2).

Reagentes e condições: i) 1-cloro-2,4-dinitrobenzeno, acetona, Δ , 16h 35%; ii) 1-BuOH, Δ , 15h, 57%.

Esquema 2. Síntese do sal de Zincke 7 e do sal piridínico quiral 9.

Todos os compostos foram caracterizados por técnicas espectroscópicas usuais. Os sais de Zincke e sal de piridínio obtidos tiveram sua citotoxicidade avaliada pelo ensaio de MTT. Os resultados encontram-se na Tabela 1.

Tabela 1. Atividade antimalárica dos análogos da teonaladina C.

Compostos	Rendimento (%)	IL50 (µg/mL)±S.D ^a
3a	57	100
3b	15	10
3c	69	100 ±12,5
4a	85	$1040 \pm 25,2$
4b	65	>1000
4c	95	$10,2 \pm 1,2$
5	15	$30,2 \pm 1,4$
7	35	>1000
9	57	>1000

^aOs valores são a média± desvio padrão.

Conclusões

A maioria dos compostos avaliados apresentou baixa toxicidade para células humanas. Ensaios de atividade antimalárica ainda em progresso poderão orientar futuras modificações nessa série de compostos de forma a otimizar suas atividades.

Agradecimentos

CNPq e FAPEMIG

¹Universidade Federal de São João del Rei, Av. Sebastião Gonçalves Coelho, 400, Divinópolis/ MG, 35501-296, Brasil. ²Departamento de Química, ICEx, UFMG, Av. Pres. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brasil.

^{*}e-mail: matheusmg15@gmail.com

¹ Cheng, W.; Kurth, M. J. Organic Preparations and Procedures Int. **2002**, *34*, 585.

² Pernak, J.; Kalewska, J.; Ksycinska, H.; Cybulski, J. Eur. Med. Chem. 2001, 36, 899.