Desenvolvimento de um procedimento espectrofluorimétrico para determinação de cetoconazol em amostras ambientais e farmacêuticas.

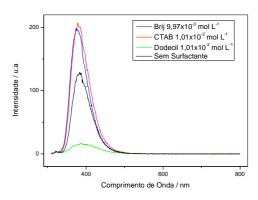
Cássia Canaza Fonseca (PG) *, Heberth Juliano Vieira (PQ). *cassiacanaza@hotmail.com

Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Exatas e Tecnologia - FACET, C.P. 322, CEP 79.825-070, Dourados-MS.

Palavras Chave: Cetoconazol, fluorescência, surfactante.

Introdução

É notório que o crescimento demográfico e a expansão industrial ocasionaram a contaminação atmosférica do solo e dos recursos hídricos em diversas regiões do planeta. Um problema encontrado atualmente é a presença de substâncias que apresentam atividade biológica nas águas de superfície. Estas substâncias originam-se do intenso uso por grande parte da população de produtos farmacêuticos, que são metabolizados e excretados nas redes de esgotos domésticos. Substâncias de diversas classes terapêuticas têm sido detectadas em esgotos domésticos, águas superficiais em concentrações na faixa de ng L⁻¹ a μg L⁻¹. 1


A ocorrência de fármacos residuais no meio ambiente pode ocasionar efeitos prejudiciais nos organismos aquáticos. O efeito pode ser em qualquer nível da hierarquia biológica: célula, órgãos, organismo, população, ecossistema. Portanto, verifica-se а necessidade do desenvolvimento de procedimentos sensíveis, rápidos e baratos para detecção dessas substâncias em águas de superfície. procedimento espectrofluorimétrico proposto tem como objetivo a determinação de cetoconazol em amostras de interesse ambiental e farmacêutico.

Resultados e Discussão

Na Figura 1 verifica-se a intensidade de emissão do cetoconazol na presença dos seguintes surfactantes: o brometo de cetil trimetilamônio (CTAB), dodecilsulfonato de sódio e polioxietileno lauril éter (Brij-35). Verifica-se que o CTAB e Brij-35 resultaram em medidas com maior intensidade de emissão. No estudo do efeito da concentração do CTAB sobre a intensidade de fluorescência a concentração de 0,100 mol L-1 CTAB foi considerada ótima para estudos posteriores.

A influência do pH do meio reacional no sinal analítico foi avaliada entre os valores de pH de 7,05 a 9,96. O sinal analítico da solução de cetoconazol aumentou significantemente até pH 7,81, permanecendo constante para pH superiores. O efeito do pH se deve ao fato de que em soluções ácidas cetoconazol existe principalmente na forma (protonado) catiônico.

35ª Reunião Ánual da Sociedade Brasileira de Química

Figura 1. Espectro de emissão do cetoconazol 1,14x10⁻⁴ mol L⁻¹ na ausência e presença de diferentes surfactantes (λ_{ex} : 288 nm; λ_{em} : 377 nm).

Cátions são excluídos da micelas de CTAB positivamente carregada por causa da interação repulsiva eletrostáticas com grupos trimetilamônio. Em pH maior o cetoconazol é desprotonado sendo solubilizados em microambiente Consequentemente, a mobilidade de moléculas do cetoconazol nas micelas fica restrito, ocasionando um aumento na intensidade. Desta maneira selecionou-se o pH 8,80 para os demais experimentos. O procedimento apresentou uma faixa linear para um intervalo de concentração de cetoconazol entre 5,32 μ g L⁻¹ a 53,24 mg L⁻¹ (Y = 10,86 + 9722,96X; r = 0,99) com um limite de detecção de 95,85 µg L-1. O procedimento foi empregado para determinação de cetoconazol em amostras farmacêuticas. Avaliou-se a recuperação de cetoconazol em amostras de águas do rio Dourados/MS, variando entre 80,0 a 90,0%.

Conclusões

O procedimento desenvolvido mostrou-se adequado à determinação de cetoconazol, em amostras de águas e produtos farmacêuticos.

Agradecimentos

A CAPES pela bolsa e a UFGD.

¹ Melo, S. A. S.; Trovó, A. G.; Bautitz, I. R. e Nogueira, R. F.P. *Quim. Nova.* **2009**, *32*, *188-197*.

² Bila, D. M. e Dezotti. *Quim. Nova.* **2003**, 26,523-530.