Avaliação da presença de metais tóxicos e sua disponibilidade físicoquímica em lodo da estação de tratamento de esgoto de Goiânia-GO

Roger Cardoso Moreira¹ (IC)*, Andréa Fernandes Arruda¹ (PQ). *roger_quimicaufg@hotmail.com

¹Laboratório de Espectroanalítica, Instituto de Química, UFG CEP 74001-970, Goiânia-GO.

Palavras Chaves: Metais, biodisponibilidade, toxicidade, lodo, extração, absorção

Introdução

Plantas de tratamento de esgotos geram lodo com uma variedade de compostos poluentes que são lançados no esgoto ou são provenientes de tratamentos físico-químicos. A presença de metais tóxicos¹ no lodo de Estação de Tratamento de Esgotos Sanitários (ETE) é o principal obstáculo para sua disposição final no meio ambiente².

Resultados e Discussão

Amostras de 1,0g do lodo seco foram utilizadas na extração sequencial seguindo metodologia proposta por Tessier³. A tabela 1 apresenta condições experimentais para obtenção de cada fração:

Tabela 1. Esquema da extração sequencial

Fração	Extrator	Condições		
Solúveis + trocavéis	MgCl 1,0 M	pH 7 à 25 ℃		
Carbonatos	NaOAc/HOAc	pH 4,5 25°C		
Óxidos de Fe e Mn	NH ₂ OH, HCI	à 86 ± 5 °C		
Matéria Orgânica	H ₂ O ₂ /NH ₄ OAc	à 96 ± 5 °C		
Residual	HNO ₃ /HCI	150 °C		
Total	HNO ₃ /HCI	150 °C		

Os sobrenadantes de cada extração foram armazenados e os resíduos foram submetidos à extrações subsequentes. Espectroscopia de Absorção Atômica por Chama foi utilizada para a quantificação dos metais. O lodo desidratado da ETE-Goiânia apresentou valores médios de umidade e pH de 71% e 11,00, respectivamente. Os resultados estão representados na tabela 2. O limite de detecção foi calculado pra cada metal.

A concentração de metais no lodo apresentou-se dentro dos limites permitidos (LEI Nº 3.581 - 12/05/2005). A partir dos resultados da tabela 2 foi

possível comparar a mobilidades dos diferentes metais em cada fração (tabela 3).

Tabela 3. Mobilidade dos metais em cada fração

Fração	Mobilidade
Solúveis + Trocavéis	Ni>Cr>Cu>Fe
Carbonatos	Mn>Ni>Zn>Cr>Cu>Fe
Óxidos de Fe e Mn	Zn>Fe>Mn>Ni>Cr>Cu
Matéria Orgânica	Cu>Cr>Ni>Mn>Zn>Fe
Residual	Pb>Fe>Ni>Cr>Mn>Cu>Zn

Os resultados mostraram também que a menor parte de cada metal (exceto o Ni) foi extraída na fração *trocáveis* + *solúveis*, ou seja na fração mais biodisponível. Os metais estudados, exceto o Zn, foram detectados na fração residual, ou seja na fração menos biodisponível.

Conclusões

Os resultados mostraram que a ordem da concentração de metais no lodo da ETE-Goiânia é a seguinte: Fe>Zn>Cu>Mn>Cr>Pb>Ni. De acordo com a legislação vigente, o lodo produzido na ETE-Goiânia pode ser considerado de boa qualidade podendo ser utilizado na agricultura, o que diminuiria a disposição irregular de lodo no meio ambiente.

Agradecimentos

Os autores agradecem à UFG pela bolsa concedida.

Tabela 2. Concentração de metais tóxicos nas amostras da ETE-Goiânia (µg metal/ g de lodo)

Metais	Fe	Cu	Zn	Pb	Ni	Cr	Mn
Fase 1	$53,1 \pm 4,9$	$3,0 \pm 0,7$	$12,3 \pm 0,3$	ND*	$18,2 \pm 0,8$	$11,8 \pm 0,7$	ND*
Fase 2	$129,3 \pm 4,5$	$5,5 \pm 0,8$	$236,2 \pm 2,4$	ND*	$17,4 \pm 0,6$	$12,0 \pm 1,4$	$85,4 \pm 0,7$
Fase 3	1410,4 ± 49,3	$7,5 \pm 0,4$	$545,2 \pm 2,7$	ND*	$10,6 \pm 0,4$	$14,6 \pm 0,7$	46.9 ± 0.5
Fase 4	$336,5 \pm 5,4$	$168,7 \pm 0,2$	$74,0 \pm 2,2$	ND*	$11,6 \pm 0,1$	$66,3 \pm 1,8$	18,5 ± 1,1
Fase 5	$3705,5 \pm 62,0$	23.8 ± 0.8	$48,2 \pm 0,9$	$85,9 \pm 28,1$	$23,2 \pm 1,2$	$37,3 \pm 1,2$	$36,7 \pm 2,0$
∑Fase	5634,8 ± 126,0	$208,5 \pm 2,9$	$915,9 \pm 8,5$	$85,9 \pm 28,1$	81,1 ± 3,1	$142,0 \pm 5,8$	187,5 ± 4,3
Total	4901,0 ± 33,0	$206,5 \pm 2,7$	$840,0 \pm 6,7$	82,4 ± 15,8	71,7 ± 1,7	136,5 ± 9,7	172,0 ± 8,1

^{*} abaixo do limite de detecção; ∑Fase = quantidade presentes nas fases 1 a 5; Total: quantidade presente na digestão total do lodo. 35ª Reunião Anual da Sociedade Brasileira de Química

¹Campos, A. M. Metais pesados e seus efeitos, **2002**, 2, 5.

²Nascimento, A.C. Naime, R. Panorama do uso, distribuição e contaminação das águas superficiais no Arroio Pampa/bacia Rio dos Sinos, **2009**, 13, 20.

³Tessier, A.; Campbell, P.G.C.; Bisson, M.; Anal.Chem. 1979, 51, 844.