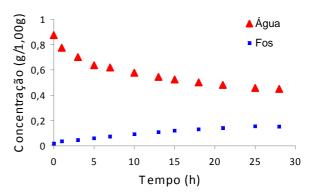
Obtenção de alimento funcional pela inserção de frutooligossacarídeos (FOS) em melão por desidratação osmótica.

Juliane R. Orives(IC)^{*}, Karina G. Angilelli (PG), Ivanira Moreira(PQ), Elisângela T. da Silva (IC), Hágata C. da Silva (IC), Jaqueline L. Pereira (IC), Kelly R. Spacino (IC). *juliane_resges@hotmail.com

Departamento de Química, Universidade Estadual de Londrina, CP6001, CEP 86051-990. Londrina-PR

Palavras Chave: Prebióticos, frutooligossacarídeos.

Introdução


O Brasil é um grande produtor de frutas, entre elas o melão é uma das que possui alto valor comercial suas propriedades sensoriais1. devido frutooligossacarídeos (FOS) são oligômeros de Dfrutose obtidos pela hidrólise da inulina ou por produção microbiana. O uso de FOS para tornar um alimento funcional tem surgido em resposta à grande demanda da população mundial por alimentos mais saudáveis e de baixa caloria. Este tipo de açúcar não convencional pois, além de não ser digerível pelo metabolismo humano, o quer dizer sem valor calórico, é considerado um alimento prebiótico. Além disso, abaixa o pH do intestino grosso, o que reduz a população de bactérias putrefativas². Este trabalho tem por objetivo inserir frutooligossacarídeos em pedaços de melão através do processo de desidratação osmótica, apresenta inúmeras vantagens quanto manutenção das propriedades estruturais nutricionais do alimento.

Resultados e Discussão

de **Pedacos** melão com volumes de $\,\mathrm{cm}^3$ 4 aproximadamente foram submersos completamente em solução aquosa supersaturada de acúcares, cuja concentração era de 42% sacarose e 18% FOS em relação ao volume final da solução. As frutas foram mantidas nesta solução estática, a 20 °C, por 28 h. Periodicamente, as amostras eram retiradas e seguiam para análises de sólidos solúveis (Brix), umidade e extração de açucares para quantificação de FOS. Esta ultima foi realizada através de kit enzimático Megazyme (Método AOAC 999.03/ Método AACC 32.32). A seguir, na Tabela 1, são apresentadas as concentrações dos açúcares no melão em alguns dos tempos amostrados. A Figura 1 mostra o perfil de concentração de água e FOS no melão durante a desidratação, onde se observa a saída de água e entrada dos frutoolissacarídeos na fruta. Nela podemos observar que ocorre um aumento na concentração de FOS na fruta e diminuição da sua umidade. É possível observar ainda que, em torno de 20 h o processo já começa a se estabilizar. sendo a perda de umidade mais evidente nas primeiras horas de imersão.

Tabela 1. Concentrações dos açúcares e de umidade na fruta durante o processo de desidratação osmótica.

Temp o (h)	Sacarose (g100g ⁻¹)	Água (g100g ⁻¹)	FOS (g100g ⁻¹)
0	10,66	87,44	1,90
1	18,95	77,50	3,55
3	26,91	70,2163	4,64
5	30,27	63,75	5,98
10	33,60	57,74	9,26
15	35,47	52,5	12,03
21	37,57	48,13	14,16
28	39,75	45,00	15,25

Figura 1. Perfil de concentração de FOS e água no melão durante a desidratação.

Conclusões

A desidratação osmótica mostrou-se um processo eficiente para a inserção de FOS ao melão. Por ser um método que demanda pouca energia, é uma ferramenta bastante útil para agregar valor ao produto, tornando-o ainda mais atrativo comercialmente.

Agradecimentos

À Capes, à UEL e à Fundação Araucária.

Teles, U. M.; Fernandes, F. A. N.; Rodrigues, S.; Lima, A. S.; Maia, G. A. e Figueiredo, R. W. *Int. J. Food Sci. Technol.* **2006**, 41, 674.

² Passos, L. M. L. e Park, Y. K. Cienc. Rural. 2003, 33, 385.