Reação de acoplamento seletiva entre 2,6-diiodoanisóis e alcinos terminais catalisada por Pd(PPh₃)₂Cl₂ e Cul.

Allan F. C. Rossini¹ (IC), Carlise Frota¹ (PG) e Cristiano Raminelli^{2,*} (PQ)

¹Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, Dourados, MS ²Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP *raminelli@unifesp.br

Palavras Chave: acoplamento, paládio, seletividade

Introdução

A reação de acoplamento cruzado entre haletos de arila e acetilenos terminais catalisada complexos de paládio e sais de cobre (I) consiste em uma eficiente ferramenta sintética para ligações formação de C-C resultando em compostos acetilênicos dissubstituídos.1 Em conformidade, neste resumo apresentamos nossos resultados preliminares envolvendo a reação de acoplamento seletiva entre 2,6-diiodoanisóis e alcinos terminais, catalisada por Pd(PPh₃)₂Cl₂ e Cul, na formação de 2-iodo-6-alquinilanisóis.

Resultados e Discussão

Inicialmente utilizamos 1,3-diiodo-2-metoxibenzeno (1a) na reação de acoplamento com fenilacetileno (2a), empregando complexo ou sal de paládio e Cul como catalisadores variando as condições reacionais, na tentativa de obter seletivamente o produto de monoacoplamento 3a (Tabela 1).

Tabela 1. Síntese do composto 3a.

Visando o aumento do rendimento para a reação de formação do produto de monoacoplamento **3a** (Tabela 1, exp. 4), trabalho subseqüente focou a otimização das condições reacionais para a transformação (Tabela 2).

Tabela 2. Otimização das condições para a síntese do composto **3a**.

1a		diiso	PPh ₃) ₂ Cl ₂ (5 mo CuI (15 mol%) propilamina, tolu mperatura, temp N ₂	ieno (осн ₃ 3а
exp.	2a (equiv)	diisopropilamina (equiv)	temp.	tempo (h)	rend. isolado (%)
1	1	1	t.a.	12	42
2	1,5	1	t.a.	12	57
3	2	1	t.a.	12	68
4	2	2	t.a.	12	82
5	2	2	50	12	71
6	2	2	t.a.	24	81

35ª Reunião Anual da Sociedade Brasileira de Química

Fazendo uso das condições reacionais otimizadas para a reação de acoplamento cruzado seletiva entre 2,6-diiodoanisóis (1) e alcinos terminais (2), Tabela 2, exp. 4, sintetizamos alguns 2-iodo-6-alguinilanisóis (3) (Tabela 3).

Tabela 3. Síntese de 2-iodo-6-alquinilanisóis (3).

abela 3. Officese de 2-1000-0-alquifiliariisois (3).							
ехр.	2,6-diiodoanisol (1)	alcino terminal (2)	produto de monoacoplamento (3)	rend. isolado (%)			
1	OCH ₃	н————	OCH ₃	82			
2	OCH ₃	н <u></u>	3b	89			
3	CI—OCH ₃	H—————————————————————————————————————	OCH ₃	95			
4		н <u></u>	OCH ₃	93			
5	H ₃ C—OCH ₃	н	OCH ₃ 3e	70			
6	H ₃ C OCH ₃	н <u></u>	16 OCH ₃	68			
7	O OCH ₃	H—==	OCH ₃	85			

 $^{\rm a}$ Condições reacionais: 1 mmol de 1, 2 mmol de 2, 2 mmol de diisopropilamina, 5 mol% de Pd(PPh_3)_2Cl_2 e 15 mol% de Cul foram agitados a temperatura ambiente sob atmosfera de nitrogênio por 12 h.

Conclusões

Otimizamos as condições para a reação de acoplamento seletiva entre 2,6-diiodoanisóis (1) e alcinos terminais (2), catalisada por paládio e cobre, que resultou na formação de 2-iodo-6-(alquinil)anisóis (3) em bons rendimentos.

Agradecimentos

Ao CNPq e a FUNDECT pelo suporte financeiro.

¹ Sonogashira, K. Em *Handbook of Organopalladium Chemistry for Organic Synthesis*, Negishi, E. (Ed.), Wiley: Nova Yorque, 2002, v. 2.