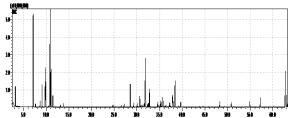
Estudo químico do óleo essencial do caule de Piper amalago em duas estações: primavera e inverno

Giuliana Thomas Vitorino ¹(IC)*, Cayo Vinícius Fernandes ¹(IC), Elina Bastos Caramão ²(PQ), Claudia Andrea Lima Cardoso ¹(PQ), Jonas da Silva Mota ¹(PQ).

*giulianavitorino@hotmail.com

¹Curso de Química - UEMS, Dourados – MS, ²IQ - Universidade Federal de Rio Grande do Sul, Porto Alegre- RS


Palavras Chave: Piperaceae, óleo essencial

Introdução

O gênero Piper pertence à família Piperaceae e abrange mais de 700 espécies amplamente distribuídas em todas as regiões tropicais e subtropicais do mundo, sendo que no Brasil ocorrem nas regiões Sul e Centro-Oeste. Economicamente, algumas plantas da família Piperaceae são empregadas em todo o mundo na produção de pimenta em mercados de especiarias¹. A medicina tradicional tem indicado o uso de espécies de Piper para muitas aplicações, tais como antidiarréico, expectorante². antitérmico е Neste trabalho caracterizou-se quimicamente os constituintes voláteis presentes nos caules de Piper amalago nas estações de primavera e inverno.

Resultados e Discussão

Os óleos essenciais, extraídos dos caules de *Piper amalago* ("in natura") através da hidrodestilação foram analisados por cromatografia gasosa acoplada à espectrometria de massas e a identificação de seus constituintes voláteis foi realizada por comparação dos índices de retenção (IR) calculados com os existentes da literatura³. Ressalta-se que os índices de retenção foram calculados a partir de uma série homóloga de nalcanos (C₈.C₂₈). A **figura 1** mostra o cromatograma representativo do óleo essencial de *Piper amalago*.

Figura 1. Cromatograma do óleo essencial dos caules de *Piper amalago* na estação de inverno

Foram identificadas 65 substâncias na primavera e 68 identificadas no inverno. A **tabela 1** mostra os principais componentes, juntamente com os seus IR calculados (**IRcal**) e da literatura (**IRlit**). Os componentes majoritários para a primavera são iso-3-tujanol e 7-epi- (α) -selineno, para inverno são (β) felandreno, (n) benzoato de hexila.

35ª Reunião Anual da Sociedade Brasileira de Química

Tabela 1. Constituintes principais dos óleos essenciais de primavera (Prim) e inverno (Inv).

Substância	IRcal	IRlit	(%) Prim	(%) Inv
(β) felandreno	1029	1030	0,06	9,14
(cis) vertocitral C	1079	1080	0,75	2,06
iso-3-tujanol	1137	1138	27,08	1,11
Hidrato de canfeno	1149	1150	1,16	0,09
7-epi-(α)- selineno	1521	1522	5,36	0,50
(cis) muurol-5- en-4-(β)-ol	1553	1552	0,92	1,51
(n) benzoato de hexila	1581	1580	0,20	9,94
Carotol	1595	1595	3,89	0,60
isolongifolan-7- α-ol	1618	1619	2,13	0,12
helifolenol A	1675	1675	0,92	0,97
5-neo-cedranol	1684	1685	1,36	0,21
acetato de Guaiol	1726	1727	0,72	1,75
acetato de E- sesquilavandulila	1741	1741	1,24	4,53

Conclusões

Foram identificados 65 componentes na estação primavera e 68 componentes na estação inverno, sendo que os majoritários foram iso-3-tujanol e (n) benzoato de hexila, respectivamente.

Agradecimentos

FUNDECT, MCT, CPP, UEMS e CNPq

Lopes J.J, et al. Exp. Toxicol Pathol, 2010, 64, 9.

² Rahman T.U, Shilp J.A, Ahmede M, Hossani C.F. J Ethnopharmacol **2005**, 99, 203

³Adams, R.P.; *Identification of essential oil components by gas chromatography/mass spectroscopy*, Allured Publishing: Illinois- USA, 2001