Evaluation of antioxidant effects in vitro of Garcinielliptone FC isolated from *Platonia insignis* Mart

Joaquim Soares da Costa Júnior^{1,2,*} (PG), Alexandre B. F. Ferraz¹ (PQ), Bartholomeu A. Barros Filho² (PQ), Chistiane M. Feitosa³ (PQ), Antonia Maria das Graças Lopes Citó², Rivelilson Mendes de Freitas⁴ (PQ), e Jenifer Saffi⁵

Palavras Chave: Platonia insignis, Garcinielliptone FC, Antioxidant.

Introduction

The Clusiaceae family includes 20 genuses, divided in 900 species, distributed in tropical regions of the world (Santos et al., 1999). Besides, some plant of Clusiaceae family has its pharmacological properties associated to xanthone derivative presence, which has antioxidant and anticarcinogen activities¹.

Platonia insignis Mart. (Clusiaceae), commonly known as "bacuri", is a thick-skinned fruit, with approximate dimension of an orange, which contains a large quantity of resins. The pulp enclosing the seeds is white, bittersweet, with a pleasant smell and taste. The fruit can be consumed raw or in the form of juice, ice-cream or jam².

The seeds were dried at 55° C and powdered. The 848.2 g of crush yielded was extracted with hexane (63%, w/w). The hexanic extract was subjected to silica gel (open column, 400 g, 4 × 60 cm, 1 ml/min) cc and eluted with n-hexane containing EtOAc increased amounts of and washed with methanol at process end.

The resultant hexanic extract yields 51 subfractions. The fraction 33 was further purified on TLC plates and eluted with CHCl₃–MeOH (9:1) to yield 1/1a (22 mg) was identified by spectroscopic methods.

Garcinielliptone FC (1/1a): yellow oil; 1 H and 13 C NMR, spectroscopic data, EIMS m/z (%): 602 [M] † (1), 465 (6), 341 (8), 231 (10),177 (3), 137 (20), 109 (11), 69 (100). Their structure and molecular formula (m/z 603.3; $C_{38}H_{50}O_{6}$) were confirmed by GC-MS and NMR data (Fig 1).

The antioxidant effects of Garcinielliptone FC (GFC) isolated from the seeds of P. insignis were assessed in vitro tests (thiobarbituric acid reactive species (TBARS) assay, hydroxyl radical-scavenging activity, and scavenging activity of nitric oxide (NO)) (Fig. 2).

Results and Discussion

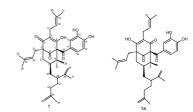


Figure 1 – Garcinielliptone FC (1/1a)

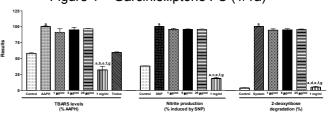


Figure 2 - Antioxidant effects in vitro of Garcinielliptone FC (GFC) against peroxyl radicals generated by AAPH and scavenging activities against nitric oxide (NO) and hydroxyl radicals. A lipid-rich system was incubated with a free radical source (AAPH) and the effect of different concentrations of GFC on the lipoperoxidation was measured.

Conclusion

In conclusions, our results support that the GFC compounds exhibits an antioxidant action preventing lipoperoxidation, probably due to hydroxyl radical scavenging activity. Further studies currently in progress will enable us to understand the precise action mechanisms of this bioactive compound.

Acknowledgements

The authors are grateful to FAPEPI and Instituto Federal de Educação, Ciência e Tecnologia do Piauí.

References

- 1. linuma M, Tosa H, Tanaka T, Asai F, Kobayashi Y, Shimano R, Miyauchi K. **Journal of Pharmacy and Pharmacology,** v. 48, p. 861-865, 1996.
- 2. Boulanger, R.; Chassagne, D.; Crouzet, J. Flavour and Fragrance Journal, v.14, p. 303-311, 1999.

¹Laboratory of Genetic Toxicology, Post-Graduation Program in Genetic and Applied Toxicology, Lutheran University of Brazil; zip code 92425-900, Canoas, RS, Brazil. *e-mail: iquimjr@gmail.com

²Department of Chemistry, Federal Institute of Piaui, zip 64000-040, Teresina, PI, Brazil.

³Department of Chemistry, Federal University of Piaui, zip 64049-550, Teresina, PI, Brazil.

⁴Department of Pharmacology, Federal University of Piaui, zip 64049-550, Teresina, PI, Brazil.

⁵Department of Basic Health Sciences – Federal University of Health Sciences of Porto Alegre, zip code 90050-170, Porto Alegre, RS, Brazil.