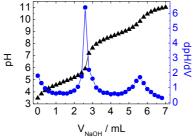
# Experimento didático sobre equilíbrio ácido-base e valores de *p*K<sub>a</sub> empregando titulação potenciométrica: uso da piridoxina (cloridrato)

Thiago A. D. dos Santos (IC), Victor F. Luz (IC), Felipe S. Semaan (PQ) \*.

Instituto de Química, Universidade Federal Fluminense, Outeiro São João Batista s/n, Niterói - RJ, CEP 24020-150.

\*semaan@vm.uff.br


Palavras Chave: constante de dissociação ácida, equilíbrio ácido-base, potenciometria, piridoxina.

## Introdução

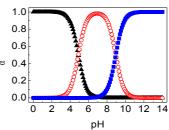
A piridoxina é uma vitamina ( $B_6$ ) hidrossolúvel que, convertida nos eritrócitos em piridoxal fosfato, se torna grupo prostético das aminotransferases, que atuam no fígado promovendo a remoção de  $\alpha$ -amino grupos durante o metabolismo de L-aminoácidos<sup>1</sup>. Considerando o efeito do pH sobre a distribuição de espécies em solução, conclui-se que é de fundamental importância o conhecimento de maneiras para determinar valores de  $pK_a$ . Neste ínterim, o presente trabalho visa apresentar uma contribuição simples, barata e rápida para aulas experimentais envolvendo equilíbrios ácido-base, estudo de distribuição de espécies e potenciometria.

### Resultados e Discussão

Diferentes formas são descritas para determinação de  $pK_a$ , desde simples titulações, até procedimentos envolvendo solubilidade e partição, e espectroscopia de  $UV^2$ . A presente proposta empregou um procedimento volumétrico simples com detecção potenciométrica (pH-metro Analyser 300 M), no qual volumes de 50,0 mL de cloridrato de piridoxina 10 mM foram titulados com solução padrão de NaOH 0,18 M.



**Figura 1.** Curva de titulação e sua primeira derivada.


Dada a dissociação do analito em solução aquosa, bem como a formação de sistemas tamponados antes dos pontos de equivalência e a hidrólise dos sais formados nos pontos de equivalência, torna-se possível o cálculo dos valores de  $pK_a$  envolvidos: uma dissociação relativa à forma cloridrato ( $pK_{a1} = 5$ 

 $\pm$  0,02), e uma segunda relativa à dissociação do grupo fenol ( $pK_{a2} = 9 \pm 0,03$ ).

$$HO$$
 $OH$ 
 $HO$ 
 $OH$ 

Figura 2. Equações envolvidas.

Com base nos valores encontrados foi proposta a seguinte curva de distribuição das possíveis espécies em função do *p*H:



**Figura 3.** Distribuição das formas possíveis em função do pH.

#### Conclusões

A simplicidade e baixo custo, bem como a rapidez e compatibilidade entre resultados obtidos e valores esperados (considerando efeitos de grupos substituintes,  $pK_{a1} = 5,20$  - piridina e  $pK_{a2} = 9,8$  - hidroxila fenólica)<sup>2</sup> viabilizam a aplicação de tal experimento no contexto das aulas práticas para os cursos de Química e Farmácia.

#### Agradecimentos

Ao Departamento de Química Analítica (GQA-UFF), pelo suporte concedido.

## Sociedade Brasileira de Química (SBQ)

Lehninger, A. L. *Princípos de Bioquímica*, Editora Sarvier, 4 Ed., 2006

<sup>2</sup> Costa, P.; Ferreira, V.; Esteves, P. e Vasconcelos, M. Ácidos e Bases em Química Orgânica, Editora Bookman / SBQ,, 2005.