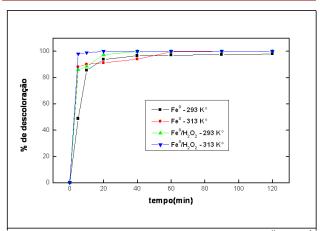
Degradação do corante azóico New Coccine utilizando o Processo de Fenton Avançado

Vitor Hugo Menezes da Silva ¹ (IC)*, Valdemir Velani ² (PQ), *Paulo S. Batista* (*PG*), Paulo Souza Müller Junior ² (TC), Antonio Eduardo da Hora Machado ¹ (PQ) *vhugomenezes @gmail.com.

Palavras Chave: Processos de Fenton, corantes azóicos, ferro zero-valente


Introdução

quando Os corantes. presentes nas águas desencadeiam problemas. residuais. vários Destaca-se a alta absortividade no visível desses insumos que acarreta, além de problemas estéticos, absorvem e dispersam a luz solar que é essencial para as algas em crescimento. Além disso, principalmente os corantes azóicos, possuem alta toxicidade resistência tratamentos е aos microbiológicos convencionais.

Atualmente, várias tecnologias estão sendo investigadas para os tratamentos destes insumos, e o Processo de Fenton Avançado (PFA) vem se demonstrando uma ferramenta promissora. Este se diferencia do processo de Fenton clássico, já que os íons Fe²⁺ são oriundos da corrosão da superfície metálica do Fe⁰ em meio ácido. A grande vantagem do PFA é que a redução de íons Fe³⁺ a Fe²⁺ é mais rápida na superfície de ferro, o que favorece a manutenção das reações oxidativas.

Reporta-se no presente trabalho a degradação do corante New Coccine (NC) empregando o PFA.

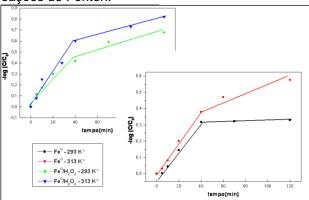

Resultados e Discussão

Figura 1. % de descoloração do NC utilizando Fe^0 (1g.L⁻¹) nas faixas de temperatura de (A) 293 e (B) 373 K° e Fe^0 / H_2O_2 (9x10⁻³ M) também nas faixas (C) 293 e (D) 373 K°.

Na figura 1 observa-se a descoloração total do NC em 60 minutos de reação em todos os processos estudados. Destacam-se os processos (C) e (D), nos quais a eliminação completa dos sinais dos 33º Reunião Anual da Sociedade Brasileira de Química

cromóforos ocorreu em aproximadamente 20 minutos de reação. A presença de H_2O_2 favorece a corrosão do Fe 0 e propicia uma maior extensão das reações de Fenton.

Figura 2 – $log[C/C_0]$ em função do tempo sendo C o teor de NC (10 ppm no início da reação).

Já a figura 2, sugere que o processo de degradação do NC por PFA ocorre cineticamente, em duas etapas de pseudo - primeira ordem: a primeira etapa, é muito provável, é preponderantemente heterogênea, a partir da corrosão do Fe⁰, seguida de uma fase homogênea, envolvendo a ação do Fe²⁺, desencadeando as reações de Fenton.² Observa-se, no processo (A), que a constante de velocidade é baixa, possivelmente devido formação de complexos ferrosos estáveis¹. O aumento da temperatura do provavelmente, tende a diminuir a formação desses complexos, além de aumentar o poder oxidativo das reações de Fenton, o que é notado no aumento considerável das constantes de velocidade dos processos (B) e (D), na fase homogênea.

Conclusões

O processo PFA possui potencial relevante para o tratamento do corante azóico NC nas condições experimentais apresentadas.

Agradecimentos

FAPEMIG CNPq e NANOBRAX

- ¹ Gomathi D et. al.; Journal of Hazardous Materials, p. 459-467, 2009.
- ² Velani V.., et. al.; Resultados não publicados

¹ Universidade Federal de Uberlândia, Instituto de Química, Laboratório de Fotoquímica, Caixa Postal 563, CEP 38400-902, , Uberlândia-MG.

² NANOBRAX, Soluções Tecnológicas e Prestação de Serviços Ltda.; Rua Cruzeiro dos Peixotos, 499, Aparecida, CEP 38400-608 Uberlândia-MG.