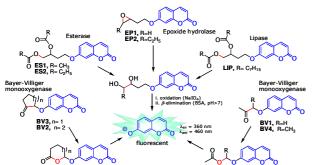
Atividade Enzimática da Microbiota da Pele Humana

Carla Porto^{1,2} (PG), Aline Crucello¹ (IC), Pedro A. C. Aquino¹ (IC), Anita J. Marsaioli¹ (PQ)*
*anita@igm.unicamp.br

Palavras Chave: microbiota da pele, atividade enzimática, triagem de alto desempenho.

Introdução


A pele humana pode ser considerada um abrigo para um complexo ecossistema microbiano, com biotas transientes, semi-residentes e residentes¹. Fatores ambientais como temperatura, umidade e exposição à luz, além de fatores do hospedeiro, como gênero, genótipo, status imune e uso de cosméticos, todos podem afetar a composição e a distribuição microbiana da pele².

Inúmeras pesquisas indicam que a microbiota tem um papel importante no sistema imune da pele, podendo atuar em doenças não-infecciosas, como dermatite atópica, psoríase e em doenças inflamatórias³. Contudo, pouco é conhecido sobre os conjuntos de espécies presentes em amostras cutâneas e suas atividades enzimáticas.

Neste contexto, este trabalho tem como objetivo o estudo das principais atividades enzimáticas de microbiotas de pele humana, para auxiliar na compreensão do papel destas microbiotas na degradação de ingredientes de fragrâncias, comumente utilizados em formulações cosméticas.

Resultados e Discussão

As microbiotas foram coletadas da região do pescoço de 55 voluntários⁴, incluindo homens e mulheres (faixa etária 20 e 45 anos). A avaliação do potencial enzimático das microbiotas foi realizada utilizando substratos fluorogênicos sintetizados em nosso laboratório⁵, como mostra o Esquema 1.

Esquema 1. Representação do ensaio fluorogênico para detecção de hidrolases e monoxigenases.

De acordo com a Tabela 1, a triagem revelou que grande parte das microbiotas apresenta alta atividade hidrolítica (esterases e lipases, ES1, ES2 e LIP). Além disso, enzimas do tipo Bayer-Villiger monoxigenases (BV1-BV4) foram encontradas em bolores de microbiotas masculinas, enquanto as epoxihidrolases foram detectadas em leveduras de microbiotas femininas (EP1 e EP2) e em bactérias e leveduras de microbiotas masculinas (EP1).

Tabela 1. Atividade enzimática de microbiotas de pele humana.

Sondas	% Atividade - Mulheres*			% Atividade - Homens*		
	Bacterias	Leveduras	Bolores	Bacterias	Leveduras	Bolores
EP1	18,5	33,3	15,8	32,1	25,0	14,3
EP2	0,0	33,3	2,6	3,6	7,1	5,7
ES1	63,0	74,1	52,6	57,1	82,1	51,4
ES2	77,8	88,9	36,8	78,6	89,3	54,3
LIP	40,7	14,8	23,7	25,0	39,3	20,0
BV1	48,1	11,1	15,8	28,6	35,7	25,7
BV2	3,7	3,7	5,3	10,7	7,1	2,9
BV3	33,3	11,1	15,8	28,6	14,3	25,7
BV4	3,7	0,0	10,5	7,1	3,6	22,9

Os resultados encontrados estão sendo confirmados através de reações de biocatálise convencional com ingredientes de fragrâncias préselecionados. A correlação entre o tipo de pele e respectivos perfis enzimáticos das microbiotas coletadas também serão investigados.

Conclusões

Os resultados obtidos fornecem perfis enzimáticos das diferentes microbiotas coletadas e sugerem que a atividade hidrolítica seja uma característica comum entre elas. Além disso, homens e mulheres mostraram perfis enzimáticos diferenciados para epoxidohidrolases e BV monooxigenases. Tais resultados reforçam a necessidade de investigar a biotransformação de ingredientes de fragrâncias, a fim de avaliar os principais aspectos relativos à segurança e performance de produtos cosméticos. Este trabalho é pioneiro nesta área e terá continuidade com a avaliação dos microorganismos isolados e identificados destas microbiotas.

Agradecimentos

Natura, Fapesp e CNPq.

¹ Instituto de Química, Universidade de Campinas, CP 6154, 13084-971, Campinas, SP, Brasil

² Natura Inovação e Tecnologia de Produtos Ltda., Rod. Anhanguera Km 30.5, 07750-000, Cajamar, SP, Brazil.

¹ Holland, K. T.; Bojar, R.A. Am. J. Clin. Dermatol. 2002, 3, 445.

² Akiyama, H.; Morizane, S.; Yamasaki, O.; Oono, T.; Iwatsuki, K. J. *Dermatol. Sci.* **2003**, *32*, 193.

³ Grice, E. A.; et al. Genome Res. 2008, 18, 1043.

⁴Protocolo aprovado pelo Comitê de Ética em Pesquisa FCM/UNICAMP (FR 1085/2008).

⁵ Marsaioli, A. J.; Reymond, J-L.; *Adv. Synth. Catal.* **2005**, *347*, 1041.