Síntese Fotoquímica de Nanopartículas Anisotrópicas de Prata

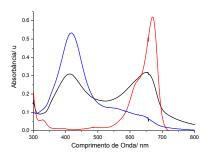
André Luis Araújo Parussulo^{1*} (PG), Vitor de Moraes Zamarion¹ (PG), Vagner Roberto de Souza² (PQ), Koiti Araki (PQ)¹ e Henrique Eisi Toma¹ (PQ). *andrearaujo@usp.br

Palavras Chave: Fotoquímica, nanotecnologia, prata, nanopartículas anisotrópicas

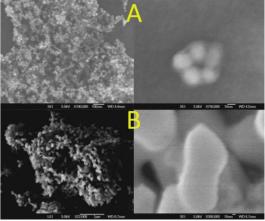
Introdução

Tipicamente, a estratégia de obtenção de estruturas anisotrópicas parte de nanopartículas esféricas (que servem como soluções crescimento), desde que elas estejam confinadas em ambientes anisotrópicos, ou, na utilização de íons/polímeros/moléculas neutras que se ligam preferencialmente em faces cristalinas das nanopartículas esféricas e induzem o crescimento preferencial em diferentes direções. Em sínteses fotoquímicas, esse direcionamento pode também, ser dependente do comprimento de onda de excitação¹.

Este trabalho vem mostrar uma síntese fotoquímica em que a forma das nanopartículas obtidas é pouco usual e cujo mecanismo de formação pode ir de encontro com todas as propostas encontradas na literatura até o momento.


Resultados e Discussão

As sementes de nanopartículas de prata foram obtidas irradiando uma solução de $AgNO_3$ (5,0 x 10^{-5} mol L^{-1}) na presença de azul de metileno (1,0 x 10^{-5} mol L^{-1}) em DMSO. Após a síntese fotoquímica das sementes a solução foi guardada no escuro para crescimento das nanopartículas anisotrópicas.


Espectros de absorção na região do UV/Vis foram utilizados para monitorar a reação (Figura 1). Inicialmente, observou-se uma banda intensa na região de 600 nm característica do corante azul de metileno. Após 5 min de irradiação, observou-se o aparecimento de uma banda de absorção na região de 400 nm, característica da ressonância plasmônica superficial de nanopartículas de prata², que aumenta com o tempo de irradiação.

Pôde-se verificar também que após a irradiação, o azul de metileno foi consumido, observando-se uma diminuição da banda na região de 600 nm. Após serem armazenadas no escuro, a banda em 410 nm diminuiu e a banda na região de 600 nm aumentou.

Para complementar a caracterização, realizou-se imagens de microscopia eletrônica de varredura de cada etapa da reação, como mostram as imagens da figura 2.

Figura 1: Espectro eletrônico da solução antes da irradiação (vermelho), após irradiação (azul) e 12 horas após a obtenção das sementes.

Figura 2. Microscopia eletrônica de varredura das nanopartículas de prata. (A) após a irradiação por 5 minutos e (B) deixando as nanopartículas geradas via fotoquímica por 15 horas no escuro.

Conclusões

Nanopartículas de prata em formato de feijões com 150 nm em média foram obtidas utilizando um método fotoquímico diferente de redução de Ag[†]. A metodologia empregada é um método barato, rápido e simples para obtenção de nanopartículas anisotrópicas.

Agradecimentos

FAPESP, CNPq, Petrobrás

¹Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L., Schatz, G. C.; Zheng, J. G., *Science*, **2001**, 294, 1901.

²Sudeep, P. K.; Kamat, P. V.; Chem. Mater. 2005, 17, 5404.

¹Av. Prof. Lineu Prestes, 748, Butantã, São Paulo, SP.

²Avenida Colombo, 5700, Maringá, PR.