Estudo da atividade antituberculose de novas amidas graxas

Caroline Da Ros (PG)^{1*}, Carolina Rosa Lopes (PG)¹, Rodrigo D. Correa (PG)¹, Tamara G. Marinho (IC)¹, Tatiane Coelho (PG)², Pedro A. Silva (PQ)² e Marcelo G. Montes D'Oca (PQ)¹.

*caroline.ros@hotmail.com

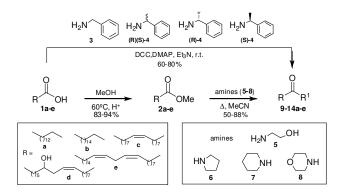
¹ Laboratório Kolbe de Síntese Orgânica, Escola de Química e Alimentos, Universidade Federal do Rio Grande – FURG, Rio Grande – RS; ² Laboratório de Micobacteriologia, Universidade Federal do Rio Grande - FURG, Rio Grande – RS

Palavras Chave: amidas graxas, tuberculose, ácido ricinileico.

Introdução

A atividade biológica das amidas graxas tem sido amplamente investigada por diversos grupos de pesquisa¹⁻². Estudos vêm demonstrando seus efeitos sobre os sistemas imunológico, sanguíneo, endócrino e metabólico³. Em vista destas propriedades, estes compostos de origem natural ou sintética têm sido considerados uma nova família de lipídios biologicamente ativos¹.

Nosso grupo vem sintetizando amidas graxas e investigando a atividade citotóxica destas, bem como a relação entre variações estruturais e atividade⁴.


Neste trabalho reportamos a ação antimicobacteriana *in vitro* de amidas graxas frente à *Mycobacterium tuberculosis* $H_{37}Rv$ (**A**), *M. tuberculosis* resistente a Rifampicina (**B**) e *M. tuberculosis* resistente a Isoniazida (**C**).

Resultados e Discussão

As amidas graxas 9-14a-e foram sintetizadas a partir dos respectivos ácidos graxos 1a-e (Esq.1). O método REMA (Resazurin Microtitre Assay) foi empregado para avaliar a atividade bacteriostática e determinar a concentração mínima inibitória (CMI). utilizando a resarzurina como um indicador de viabilidade celular (Tab.1). Os melhores resultados foram observados para a ricinoleilpirrolidilamida (12d), para as quais a concentração mínima inibitória foi de 12,5 e 6,25 µg/mol, linhagens A, B e C. Já para a cepa resistente a Isoniazida (C), CMI's de 6,25 µg/mol foram observadas para os compostos 12c, 14c, 12d, 14d, (S)10e. Analisando a porção nitrogenada da molécula (R1), os melhores resultados foram observados para derivados de aminas cíclicas: 12c-e, 13c e 14c-d.

Conclusões

Uma maior atividade foi observada para amidas derivadas de cadeias insaturadas e de aminas cíclicas. Entre estas, a (*R*)-ricinoleilpirrolidilamida (**12d**), derivada do ácido ricinoleico e da pirrolidina, demonstrou a melhor atividade para as três linhagens testadas.

Esquema 1: Síntese de amidas graxas

Tab. 1: Atividade antimicobacteriana das amidas graxas.

4*4	R	R^{I}	CMI μg/ml		
Amida			A	В	С
12a	W ₁₄	-N <u></u>	25	25	25
9c	(Y)7 (Y)7	, H, O	(-)	(-)	100
(R)10c	W7 W7	, N	(-)	50	12,5
(R/S)10c	W77 - W77	,N,	(-)	100	(-)
12c	(1)7 (1)7	-N <u></u>	25	12,5	6,25
11c	(Y) - (Y)	$-N$ \sim OH	25	25	12,5
14c	₩ 7	-N_O	25	12,5	6,25
13c	₩ 77	_N_	50	25	12,5
9d	OH V/5	JI 🗘	25	12,5	12,5
(R)10d	OH V ₅	J. O	100	25	12,5
(S)10d	OH V/5	, H,	100	50	100
12d	OH Mys	-N <u></u>	12,5	6,25	6,25
14d	OH Y ₅	-N _O	50	12,5	6,25
(S)10e	<u></u>	JI O	50	12,5	6,25
12e	1 1 1 1 1 1 1 1 1 1	-N <u></u>	12,5	12,5	12,5

Agradecimentos

Ao CNPQ e à CAPES.

[1] Boger,D.L.; Henriksen, S.J.; Cravatt, B.F.; Curr. Pharm. Des. 1998, 4, 303-314; [2] Bezuglov, V. V.; Brobov, M. Y.; Archakov, A. V.; Biochem. 1998, 63, 22. [3] De Petrocellis, L.; Melck, D.; Bisogno, T.; Di Marzo, V.; Chemistry and physics of lipids, 2000, 108, 191-209; [4] Lopes, C.R.; Rodrigues, M.; Freitas, B.; Clementim, P.M.; D'Oca, M.G.M.; XVI Encontro de Química da Região Sul, 2008, Blumenau-SC