Estudos Teóricos da Interação da Água com Derivados de Naftalimidas no Processo de Transferência de Carga

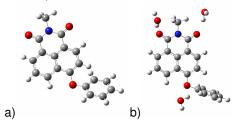
Janildo Lopes Magalhães ^{1*}(PQ), Francisco das Chagas Alves de Lima ²(PQ), Welter Cantanhêde da Silva ¹(PQ). *janildo@ufpi.edu.br*

Palavras Chave: naftalimidas, tranferência de carga, DFT, optimização de geometria, orbitais de fronteira.

Introdução

As naftalimidas apresentam comportamento espectroscópico sensível à sua vizinhanca molecular, bem como uma forte dependência de sua propriedades geometria nas fotofísicas. geometrias das moléculas foram calculadas em nível de teoria RB3LYP/6-31G(d). Com as estruturas otimizadas, no vácuo, realizaram-se cálculos levando em consideração o efeito do solvente (água) utilizando o modelo de polarização continua Model (Polarized Continuum PCM). conhecimento básico de qualquer sistema é sem dúvida uma das etapas mais importantes e cruciais para o planeiamento de novos materiais. E dentro dessa perspectiva, teremos um mapeamento mais detalhado das propriedades desses compostos.

Resultados e Discussão


As energias eletrônicas dos orbitais de fronteiras foram obtidas a partir da otimização das geometrias no vácuo (ver Tabela 1). Por esses dados, observou-se que as energias dos orbitais de fronteira HOMO-LUMO alteradas são significativamente com a entrada dos substituintes na posição C4 da N-metil-1,8-naftalimida (NI), propriedades influenciando diretamente suas fotofísicas. Os substituintes aromáticos PNI e NNI apresentaram uma maior contribuição no processo de transferência de carga em função de um acoplamento do substituinte com o restante da molécula. Esse acoplamento vai diminuindo com o aumento do número de anéis aromáticos e/ou interações com a molécula de água.

Em investigações experimentais¹, determinou-se que a fluorescência do composto PNI é facilmente suprimida com a interação da molécula de água. Acreditava-se numa interação das moléculas de água com o oxigênio dos substituintes. Isso de fato foi esclarecido com os cálculos. Uma vez que os estudos realizados criteriosamente consistiam em adicionar aos poucos moléculas de água ao redor dos compostos e avaliar variação das energias dos orbitais de fronteira bem como as distorções na geometria. Na Figura 1, observa-se a distorção da geometria em função da adição das moléculas de água.

Tabela 1. Propriedades moleculares dos derivados de naftalimidas.

Compostos	λ_a (nm)	E _{HOMO} (eV)	E _{LUMO} (eV)	ΔE (eV)
NI	327	-6,484	-2,407	4,07
	330*			
HNI	343,6	-6,136	-2,219	3,92
MNI	347,2 360*	-6,060	-2,156	3,90
PNI	353,4 358*	-6,124	-2,270	3,85
NNI	352,1 360*	-6,075	-2,212	3,86

*valores em solução usando acetonitrila como solvente na concentração de 1x10-5 mol L-1. NI = N-metil-1,8-naftalimida; HNI = 4-hidróxi-N-metil-1,8-naftalimida, MNI = 4-metóxi-N-metil-1,8-naftalimida; PNI = 4-fenóxi-N-metil-1,8-naftalimida; NNI = 4-naftóxi-N-metil-1,8-naftalimida.

Figura 1. a) PNI no vácuo; b) PNI interagindo com a H_2O .

Conclusões

Através dos cálculos, observou-se que a água interage com os substituintes causando uma distorção na geometria interferindo no processo de transferência de carga.

Agradecimentos

CNPq, CAPES e FAPEPI.

¹ Departamento de Química, CCN, Universidade Federal do Piauí, Teresina – Pl.

² Faculdade Santo Agostinho,FSA, Teresina – Pl.

¹Magalhães, J. L.; Pereira, R. V.; Triboni, E. R.; Berci-Filho, P.; Gehlen, M. H.; Nart, F. C. *J. Photoc. Photob. A: Chem.* **2006**, 183, 165.