Síntese e análise por Raman e Infravermelho dos Inosinatos de Metais Alcalinos Terrosos.

Diego Borba dos Santos⁽¹⁾ (IC), Luis Carlos M. Machado⁽¹⁾ (PQ), Eder Tadeu G. Cavalheiro⁽¹⁾ (PQ)^{*} *cavalheiro@igsc.usp.br

(1) Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, CEP 13560-970, São Carlos, SP.

(1)

Palavras Chave: inosinatos, IMP-2Na, Raman, metais alcalinos terrosos.

Introdução

Os nucleotídeos reagem com íons de metais alcalinos, alcalinoterrosos e de transição para produzir complexos do tipo $M_2L.nH_2O$ e $ML.nH_2O$, respectivamente quando $M=M^+$ e M^{2+} . A literatura descreve a preparação de sais de alcalinos e alcalinos terrosos a partir do ácido inosínico $H_2(5'-IMP)^{1-3}$.

Neste trabalho, descreve-se a síntese dos mesmos sais a partir do sal de sódio da inosina -5'-monofosfato (Na₂(5'-IMP).7,5H₂O), como representado na Equação 1. O sais foram obtidos usando-se os cloretos de Mg²⁺, Ca²⁺, Ba²⁺ e Sr²⁺. A vantagem é que o sal de sódio é mais barato e fácil de obter do que o H₂(5'-IMP).

Os sais obtidos da síntese se apresentam na forma de cristais brancos ou esbranquiçados, inodoros e solúveis em água.

Resultados e Discussão

Os sais de inosinatos de metais alcalinos terrosos foram obtidos conforme a síntese apresentada na Equação 1, com rendimento médio de 40% e foram caracterizados por Espectroscopia Raman e na região do Infravermelho. Para a determinação da estequiometria, os sais foram titulados com EDTA e utilizou-se o indicador Negro de Eriocromo-T para os complexos metálicos de Mg²⁺ e Ca²⁺ e Púrpura de Ftaleína para o Ba²⁺ e Sr²⁺ e os cálculos efetuados com base nos teores de água de hidratação descritos na literatura.^{1,2}

As proporções metal ligante obtidas estão representadas na Tabela 1.

Os espectros Raman foram obtidos com um espectrofotômetro Lambda Solutions, modelo Dimension - P2 Raman. As principais bandas características das ligações dos metais com o nucleotídeo dos sais de inosinatos foram observadas, conforme demonstrado na Tabela 2.

Tabela 1. Proporções metal-ligante obtidas à partir das titulações complexométricas

Sal	Cátion	(Mol de Metal)/(Mol de Sal)
Mg(5´-IMP)	Mg ²⁺	0.85 ± 0.02
Ca(5´-IMP)	Ca ²⁺	$1,00 \pm 0,04$
Sr(5´-IMP)	Sr ²⁺	$1,03 \pm 0,05$
Ba(5'-IMP)	Ba ²⁺	1,01 ± 0,05

Tabela 2. Principais bandas Raman

Sal*	υPO ₃ ²⁻ (cm ⁻¹)	υN(7)C(8)+δC(8)H (cm ⁻¹)
Mg(5´-IMP).3H ₂ O	1003-962	1509
Ca(5´IMP).6H ₂ O	974	1485 - 1472
Ba(5´IMP).6H ₂ O	976	1478 - 1466
Sr(5'IMP).6H ₂ O	974	1482 - 1462

*estequiometria proposta com base na literatura para as águas de hidratação e titulações complexométricas para os cátions

Os espectros FT-IR foram obtidos utilizando-se espectrofotômetro Bomem, model MB – 102. As principais vibrações na região de 1800 – 400 cm⁻¹ dos sais também foram observados, conforme demonstrado na Tabela 3.

Tabela 3. Bandas de FT-IR dos complexos metálicos de inosinatos

Sal*	υPO ₃ ²⁻ (cm ⁻¹)	υN(7)C(8)+υC(8)H (cm ⁻¹)		
Mg(5´-IMP).3H ₂ O	980	1468		
Ca(5´IMP).6H ₂ O	984	1472 - 1454		
Ba(5´IMP).6H ₂ O	976	1478 - 1466		
Sr(5'IMP).6H ₂ O	980	1483 - 1470		

*estequiometria proposta com base na literatura para as águas de hidratação e titulações complexométricas para os cátions

Conclusões

Os resultados das análises espectroscópicas indicam que os sais de metais alcalinoterrosos derivados do Na₂(5´-IMP) foram obtidos, com os teores de águas de hidratação da literatura, com boa concordância com as titulações complexométricas.

Agradecimentos

CNPq, CAPES, FAPESP (06/06633-6).

^T Tajmir-Riari, H. e A.; Theophanides, T.Can. J. Chem. 1985, 63, 2065.

² Sigel, H., Massoud, S. S. e Corfù, N. A. J. Am. Chem. Soc. **1994**, 116, 2958

³ Carmona, P.; Escobar, R.; Molina, M. e Rodriguez-Casaso, A. *J. Raman Spectrosc.* **1996**, *27*, 817.