Catalisadores TiO₂ na Presença de Ferro e Níquel Aplicados na Redução do Mercúrio (II): Preparação e Caracterização

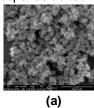
Débora M. Kochepka¹ (IC), Luis Eduardo L. Guerreiro¹ (IC), Willian Rottava¹ (IC), Leda Maria S. Colpini^{1*} (PQ), Helton J. Alves¹ (PQ) e Giane G. Lenzi² (PQ). *ledasaracol@ufpr.br

¹Universidade Federal do Paraná – Campus Palotina/Curso Superior de Tecnologia em Biocombustíveis, Palotina - PR ²Politecnico di Torino/ Materials Science and Chemical Engineering Department, Torino - Italy

Palavras Chave: impregnação, Fe/TiO2, Ni/TiO2, MEV/EDS, DRX.

Introdução

Atualmente, a contaminação do meio ambiente, especialmente de água e de alimentos, por metais pesados tem ocorrido de forma progressiva devido principalmente ao uso de compostos contendo mercúrio na agricultura e para fins industriais [1]. As técnicas tradicionais de tratamento de efluentes líquidos são eficientes para a remoção de alguns poluentes [2]. Contudo, acabam transferindo os poluentes da fase líquida para a fase sólida, provocando outro problema. Uma maneira alternativa de eliminar a contaminação do meio ambiente por mercúrio é a redução desse material por fotocatálise. Neste sentido, foram sintetizados catalisadores de TiO₂ na presença de ferro e níquel, pelo método da impregnação, para posterior aplicação na redução do mercúrio (II). Os catalisadores foram caracterizados por microscopia eletrônica de varredura com energia dispersiva de raios-X (MEV/EDS) e difração de raios-X (DRX).


Resultados e Discussão

A Tabela 1 mostra os resultados obtidos através de EDS das concentrações de Fe e Ni nos catalisadores em estudo contendo nominalmente 2,0 e 5,0 % de Fe e Ni em massa.

Tabela 1. Análise de EDS.

Catalisadores	Fe ou Ni (%
	em massa)
2% Fe/TiO ₂	3,26 (Fe)
5% Fe/TiO ₂	7,92 (Fe)
2% Ni/TiO ₂	1,98 (Ni)
5% Ni/TiO ₂	5,69 (Ni)

Pela tabela, verificou-se que os valores das concentrações de Fe e Ni nos catalisadores, corresponde ao teor desejado inicialmente 2 e 5%.

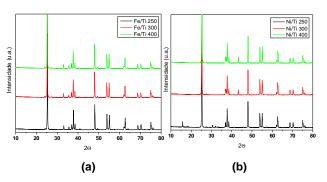


Figura 1. Micrografias eletrônicas de varredura dos catalisadores calcinados a 400 $^{\circ}$ C (ampliação: 50.000x): (a) 2% Fe/TiO₂ e (b) 2% Ni/TiO₂ .

A textura e morfologia dos catalisadores podem ser visualizadas na Figura 1. Pelas análises de microscopia os materiais apresentaram uma distribuição uniforme com tamanho de partículas que variaram entre 0,027-0,27µm para o catalisador 2% Fe/TiO₂ e a do material 2% Ni/TiO₂ em torno de 0.05-0.57µm.

As estruturas cristalinas do material 5% Fe/TiO $_2$ calcinado em diferentes temperaturas: 250, 300 e 400 °C estão apresentadas na Figura 2 (a). Nota-se em todas as amostras as linhas características de TiO $_2$ anatase e Fe $_2$ O $_3$. Enquanto que nos difratogramas do catalisador 5% Ni/TiO $_2$ (Figura 2(b)), observa-se as linhas características de NiO e TiO $_2$ exclusivamente anatase, não evidenciando a presença de outros tipos de óxidos mistos [3].

Figura 2. Difratograma de raios-X dos materiais calcinados em diferentes temperaturas: 250, 300 e 400 $^{\circ}$ C: (a) Fe/TiO₂ e (b) Ni/TiO₂.

Conclusões

Os estudos realizados até o momento indicam a obtenção dos catalisadores (Ni/TiO₂ e Fe/TiO₂) pelo método de impregnação, visando o estudo da perfomance desses materiais em processos fotocatalíticos de degradação de soluções de mercúrio (II).

Agradecimentos

D.M.K. agradece a UFPR pelo auxílio financeiro.

¹ Horvat, M. In: Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances, Baeyens. p.1, 1996.

² Lafi, W. K.; Al-Qodah, Z. J. Hazard. Mater. 2006, 137, 489.

³ JCPDS – Internacional Centre for Diffraction Data. PCPDFWIN, v. 130.