Uso de padrão interno adsorvido na determinação elementar de cimento com análise direta via amostragem de suspensão por ICP OES com configuração axial

Alexandre L. Souza (PG), Pedro V. Oliveira (PQ), Sherlan G. Lemos (PQ)

*alexquim@iq.usp.br

Palavras Chave: ICP OES, cimento, padrão interno, correção de efeito de matriz

Introdução

O cimento é um importante material, pois, está intimamente ligado com o crescimento tecnológico de um país sendo considerado uma das principais comodities mundiais. É constituído de clínquer e adições, que podem conter várias impurezas ^{1,2}. Alguns elementos são adicionados propositalmente, por fazerem parte da estrutura funcional do cimento, outros podem ser involuntariamente adicionados devido processamento^{1,2} Comumente. determinações elementares nessas matrizes são realizadas após dissolução ácida ou fusão alcalina. Uma outra vertente aplica a análise direta de sólidos via introdução de suspensão por ICP OES. Contudo, este tipo de abordagem, em plasmas com configuração axial, está sujeita a vários erros associados às variações experimentais e instrumentais que podem prejudicar a precisão e exatidão dos resultados. 1.3 Nesse contexto, o padrão interno tem sido muito utilizado para minimizar tais erros. Sendo assim, o objetivo do trabalho foi estudar, sistematicamente parâmetros para o desenvolvimento de método visando à utilização dos elementos Be, Dy, Gd, In, La, Sc e Y como padrões internos na determinação de Al, Cr, Ca, Fe, K, Mg, Mn, Na, P, S, Si, Sr e Ti, Zn em cimento por ICP OES com amostragem de suspensão.

Resultados e Discussão

Foram utilizadas amostras de material de referência certificado (CRM) de cimento Portland (1889a e 1886a) do National Institute of Standard and Technology na parâmetros otimização dos instrumentais, desenvolvimento e na avaliação da exatidão do método para as determinações elementares por ICP OES com vista axial. Estudos para avaliar a influência da acidez na extração dos analitos e na adsorção dos elementos escolhidos como padrões internos sobre as partículas de cimento foram realizados. Esses elementos foram escolhidos a partir de estudos realizados empregando ferramentas quimiométricas e gráficos de correlações 4 Em frascos de polipropileno foram pesados 60 mg de cimento Portland (CRM 1889a - NIST), com adição dos padrões internos na concentração final de 5 mg L⁻¹ em diferentes concentrações de HNO3 (0,1; 0,25; 0,5; 0,75 e 1% v v⁻¹) volume final de 20 ml. As medidas dos sinais de intensidade dos analitos e PIs foram feitas no sobrenadante, após centrifugação durante 1 min (3500 rpm). Para avaliar a porcentagem de recuperação nesses diferentes meios ácidos. O aparelho foi calibrado a partir de soluções multielementares para os elementos Al, Cr, Fe, K, Mg, Mn, Na, Si, Sr, Ti e Zn (0,5 a 20 mg L^{-1}). Individuais para Ca (10 a 250 mg L^{-1}), P (0,5 a 10 mg L^{-1}) e S (5 a 30 mg L^{-1}) em meio de 0,5 % v v^{-1} de HNO₃, com e sem a correção com os padrões internos. Condições do ICP utilizadas, potência aplicada 1,5 Kw, vazão do gás coolant 15,0 L min⁻¹ e do gás auxiliar 0,6 L min⁻¹, diâmetro interno do tubo central 2,5 mm; câmara de nebulização do tipo ciclônica e nabulizador Burgner, condições robustas de análise utilizadas (CR). Na melhor condição ácida escolhida a partir dos estudos anteriores (0,5 % v v de HNO3) foram preparadas novas suspensões das amostras de cimento com adição dos elementos que geraram os melhores resultados PIs para um volume final de 20 ml. As amostras foram homogeneizadas por efeito vortex antes da introdução no aparelho. O aparelho foi calibrado e foram realizadas as análises. Os mesmos estudos foram feitos em condições não robustas (CNR), com o intuito de avaliar a eficácia dos padrões internos na correção de efeito de matriz e dos processos que ocorrem no plasma. Os melhores resultados obtidos estão listados na Tabela 1.

Tabela 1. Valores de recuperação para os melhores Pls utilizados para as amostras de referência certificadas.

	Amostra 1886a		Amostra 1889a	
Elementos	PI	Rec.%	PI	Rec.%
Al 176.641	In	93	Sc	89
Ca 183.801	In	88	In	85
Cr 284.325	sem	117	Sc	111
Fe 259.941	Sc	79	Sc	92
K 766.491	In	83	In	85
Mg 285.213	In	95	In	86
Mn 257.611	Dy	92	Sc	86
Na 589.592	Sc	105	sem	119
P 213.618	In	96	Sc	92
S 182.034	sem	101	sem	98
Si 251.920	In	97	Be	92
Sr 460.733	Dy	94	Dy	98
Ti 334.941	Sc	68	Sc	74
Zn 206.191	sem	100	sem	85

Conclusões

O uso de padrão interno adsorvido (PIA) foi eficaz na correção dos erros aumentando a precisão e a exatidão dos resultados para a análise de cimento em suspensão utilizando ICP OES com visão axial sem nenhuma etapa adicional de moagem, preparação da amostra mínima e calibração utilizando solução aquosa. As hipóteses investigadas (o PI deve adsorver parcialmente, sobre as partículas da amostra em suspensão e a extração dos analitos deve ocorrer na mesma proporção dos PIs adsorvidos) para que os PIs tenham uma boa eficiência na correção dos erros associados, foram confirmadas.

Agradecimentos

FAPESP, CNPq, CAPES e IQ/USP

¹ Instituto de Química, Universidade de São Paulo, C. P 26077, 05508-000, São Paulo, SP, Brasil,

² Departamento de Química, Universidade Federal da Paraíba, C.P 5093, CEP 58051-970, João Pessoa, PB, Brasil

¹ Souza, A. L., Dissertação de Mestrado, 2007, IQ-USP, São Paulo.

²Taylor, H. F. W., Cement Chemistry, Academic Press, London, 1990.

³Arruda, M.A.Z ed.; *Trends in sample preparation*, Nova Science Publishers, New York, USA, **2006**.

⁴Trabalho apresentado na 31 RASBQ, poster - QA-089.