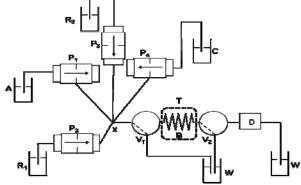
Sistema de análises em fluxo com microbombas solenoide para a determinação espectrofotométrica de amônio em águas de chuva

Wanessa R. Melchert (PQ)*, Lúcia H. G. Coelho (PQ), Ivano G. R. Gutz (PQ), Fábio R. P. Rocha (PQ) wanemelc@iq.usp.br

Instituto de Química USP - Av. Prof. Lineu Prestes, 748; 05508-900; São Paulo-SP

Palavras Chave: espectrofotometria, cela de longo caminho óptico, FIA, eletroforese capilar, amônio, água de chuva.


Introdução

O aumento da acidez das chuvas é atribuído, principalmente, aos ácidos sulfúrico, nítrico e carboxílicos. No entanto, os poluentes ácidos podem ser mascarados pela presença de compostos alcalinos como o amônio, proveniente de emissões biogênicas, atividades antropogênicas e emissões industriais. O presente trabalho tem por objetivo propor o aperfeiçoamento de método espectrofotométrico (ES) para determinação de NH₄⁺ em águas de chuva utilizando sistema de análises em fluxo com microbombas solenoide e espectrofotometria com cela de longo caminho óptico. Os resultados obtidos para concentração de NH₄⁺ foram comparados com os determinados por eletroforese capilar com detecção condutométrica sem contato (CE-C4D)¹.

Resultados e Discussão

O sistema de análises em fluxo foi construído com quatro microbombas solenoide de 12 μ L ($P_1 - P_4$) e duas válvulas solenoide (V1 e V2), conforme mostrado na Figura 1. As medições espectrofotométricas foram realizadas em 624 nm com um espectrofotômetro multicanal CCD e uma fonte de tungstêniohalogênio. Fibras ópticas foram utilizadas para transmitir a radiação a uma cela de fluxo com caminho óptico de 100 cm (250 μL de volume interno). O módulo de análises foi projetado para amostragem binária² levando-se em conta as características da reação de Berthelot modificada, utilizada na detecção ES de NH₄⁺³. O ciclo de análise foi iniciado por bombeamento da amostra e reagentes através de P₁, P₂ e P₃, seguida de rápida mistura nas interfaces. A sequência foi repetida 8 vezes e o fluxo foi interrompido por 60 s quando a zona de amostra encontrava-se em reator alocado em banho aquecido à 50

Amostras de águas de chuva foram coletadas em três pontos do estado de São Paulo e armazenadas em freezer até o momento da análise. As concentrações de NH₄⁺ foram determinadas pelo método **ES** proposto e comparadas com as obtidas por **CE-C4D**, sendo essas procedidas em eletrólito de corrida contendo 20 mmol L⁻¹ ácido 2-(N-morfolino)-etanosulfônico (MES), 20 mmol L⁻¹ histidina e 2 mmol L⁻¹ de 18-crown-6-éter coroa (pH = 6,2) ¹. A Tabela 1 apresenta as concentrações de NH₄⁺ obtidas pelas duas metodologias em amostras de chuva.

Figura 1. Diagrama de fluxos do sistema para determinação de amônio. P_1 - P_4 : microbombas solenoide; V_1 - V_2 : válvulas solenoide; A: amostra; C: água deionizada; R_1 : 0,025% (m/V) nitroprussiato de sódio e 0,05% (m/V) salicilato de sódio; R_2 : 0,004% (m/V) hipoclorito de sódio e 0,025 mol L^{-1} NaOH, B: reator (0,8 mm d.i. x 25 cm); T-banho termostático a 50 °C; D: cela de longo caminho óptico (624 nm); x – confluência; W: descarte.

Tabela 1. Concentrações de NH₄⁺ determinadas por **ES** (metodologia proposta) e por **CE-C4D**.

Local de coleta	Data da coleta	[NH4 [†]] – ES*	[NH4 [†]] – CE- C4D*
Santa Cruz do Rio Pardo	04/05/09	(357,1 ± 4,5)	(227,5 ± 36,1)
Santa Cruz do Rio Pardo	31/05/09	$(375,9 \pm 11,4)$	$(308,5 \pm 31,2)$
Boituva	10/05/09	$(317,2 \pm 29,8)$	$(394,5 \pm 24,4)$
São Paulo	06/04/09	(493.8 ± 12.3)	$(450,4 \pm 51,6)$
São Paulo	13/04/09	$(416,4 \pm 8,6)$	$(468,6 \pm 48,3)$

*Concentrações em μg L¹. Desvio padrão referente à injeção das amostras em triplicata.

Conclusões

As concentrações de NH_4^+ nas amostras de água de chuva determinadas pelos dois métodos foram concordantes a 95% de confiança. A determinação de NH_4^+ por **ES** apresenta maior sensibilidade (L.D. = 5.5 μ g L⁻¹) em comparação à **CE-C4D** (L.D. = 22 μ g L⁻¹). Destaca-se o reduzido consumo de amostra e reagentes proporcionado pela CE, mas que ainda apresenta sensibilidade aquém da proporcionada pelas técnicas espectroscópicas.

Agradecimentos

À FAPESP e ao CNPq pelas bolsas concedidas.

[1] F.R. Rocha, J.A.F. da Silva, C.L. Lago, A. Fornaro, I.G.R. Gutz, *Atmos. Environ.*, **2003**, *37*, 105.

[2] F.R.P. Rocha, B.F. Reis, E.A.G. Zagatto, J.L.F.C. Lima, R.A.S. Lapa, J.L.M. Santos, *Anal. Chim. Acta*, **2002**, *468*, 119.

[3] F.R.P. Rocha, B.F. Reis, Anal. Chim. Acta, 2000, 409, 227.