Participação do CYP-450 na Biotransformação de Naringina por Pycnoporus sanguineus

Vinícius M. Alves^{1*} (IC), Carolina H. Andrade¹ (PQ), Francislene L. Batista¹ (PG), Carla R. M. da Cunha¹ (PG), Telma A. Garcia² (PQ), Valéria de Oliveira¹ (PQ) *viniciusm.alves@gmail.com

¹LaBiocon, Faculdade de Farmácia-UFG, Goiânia-GO, Brasil. ²Laboratório de Enzimologia, Faculdade de Farmácia-UFG, Goiânia-GO, Brasil.

Palavras Chave: Bioconversão, Naringina, Pycnoporus sanguineus, citocromo P-450.

Introdução

Microrganismos têm sido utilizados no estudo do metabolismo de diversos produtos naturais e para a síntese de moléculas análogas de flavonóides¹. Cepas de fungos filamentosos, contendo o sistema enzimático CYP-450 semelhante ao de mamíferos, são responsáveis por algumas reações de bioconversão.

O Pycnoporus sanguineus é um basidiomiceto da família Polyporaceae e, assim como outros fungos lignolíticos, é estudado principalmente pela produção de lacase, lignina peroxidase e manganês peroxidase². A naringina (Fig.1) é um flavonóide presente em frutas cítricas e apresenta propriedades anti-inflamatórias e antioxidantes³.

Neste trabalho estudou-se a participação do sistema enzimático CYP-450 na biotransformação da naringina por *Pycnoporus sanguineus*.

$$R_1$$
 OH

 R_2 O

 R_4 OH

 R_1 OH

 R_4 OH

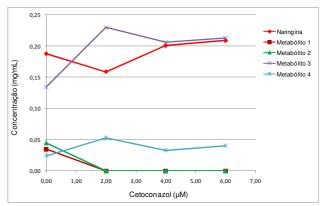
 R_5 OH

 R_6 OH

 R_7 OH

 R_8 OH

 R_8


Figura 1. Estrutura da naringina.

Resultados e Discussão

Dez erlenmeyers contendo meio líquido enriquecido foram incubados com P. Sanguineus a $27\,^{\circ}\text{C}$, a 200 rpm, por 36 horas. Adicionou-se 50 mg de naringina (1 mg/mL) aos frascos. Para o estudo da participação do CYP-450 na produção dos metabólitos, utilizou-se o inibidor cetoconazol em diferentes concetrações. Adicionou-se 2, 4 e 6 μ M de cetoconazol aos frascos. As culturas foram incubadas, sob as mesmas condições prévias, por um período de 96 horas. Foram coletadas alíquotas de 24 em 24 horas para o monitoramento da

formação dos metabólitos por cromatografia líquida de alta eficiência (CLAE).

Foi possível observar a formação de quatro metabólitos da naringina durante as 96h de incubação. Observou-se que após a adição do inibidor de CYP-450 cetoconazol nas diferentes concentrações houve a inibição total da formação dos metabólitos M1 e M2 (Fig. 2).

Figura 2. Representação gráfica do monitoramento da formação dos metabólitos da naringina por CLAE, nas diferentes concetrações de cetoconazol. Condições cromatográficas: coluna Lichrospher 100 RP 18 – Merck (250 x 4,6mm x 0,5μ) com detecção de 256 nm, fase móvel MeOH/MeOH:água 20:80.

Esses resultados indicam a participação do CYP-450 do *P. sanguineus* na produção dos metabólitos M1 e M2. Já os metabólitos M3 e M4 foram produzidos por outras enzimas fúngicas, como a lacase.

Conclusões

Com este trabalho, sugere-se a participação do sistema enzimático CYP-450 do *P. sanguineus* na produção dos metabólitos M1 e M2 da naringina.

Agradecimentos

CNPq, CAPES e FAPEG.

33ª Reunião Anual da Sociedade Brasileira de Química

¹Maatooq, G.T & Rosazza J.P.N. *Phytochem.*, **2005**, *66*, 1007.

²Esposito E., et al. J. Biotechnol., **1993**, 29, 219.

³Fang T., et al. J. Pharm. Biomed. Anal., **2006**, 40, 454.