Um Microflow-Batch para análise espectrométrica de corantes

Yebá N M Fagundes¹ (IC)*, Marcelo B Lima (PG), Severino S Monte Filho(PG), Stéfani I E Andrade (IC), Mário César Ugulino de Araújo (PQ)

*yebangoaman@hotmail.com

Introdução

O crescente interesse da química por pesquisas em microfabricação deve-se as suas características intrínsecas como portabilidade, alta frequência analítica e, principalmente, baixo consumo de reagentes e amostras que reduzem consideravelmente os custos da análise e a geração de resíduos¹.

O objetivo deste trabalho foi desenvolver um microssistema, baseado nas características de um *flow-batch* convencional², empregando a técnica de fotolitografia UV em uretana-acrilato³. O sistema proposto foi avaliado na análise de três corantes alimentícios: vermelho 40, amarelo crepúsculo e tartrazina.

Experimental

O *microflow-batch* proposto (**Figura 1**) utiliza um mini-espectrômetro da *Ocean Optics*, modelo *Red Tide – USB 650*, como detector e um LED branco como fonte de radiação visível, ambos integrados a microcâmara *flow-batch*.

Este foi projetado em CorelDraw-X3[®] e impresso em transparência com uma impressora laser com resolução 1200 dpi (*HP LaserJet P2014*).

Uma fotoexpositora UV (Carimbos Medeiros Ltda) foi usada para realizar a fotopolimerização do substrato uretana-acrilato.

Os fluidos foram impulsionados por uma bomba peristáltica *Ismatec*, modelo ISM 931. Para controle dos fluidos foram utilizadas miniválvulas solenóides da *Lee Company*, modelo LHDA 0531415H.

Um fio de nylon com uma hélice em uma das suas extremidades e um motor de corrente continua na outra, foi acoplado ao *microflow-batch* para promover a mistura dos fluidos.

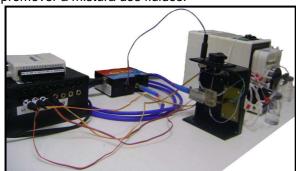


Figura 1. Sistema do microflow-batch espectrofotométrico

O *microflow-batch* foi controlado via computador usando um *software* escrito em LabVIEW 8.5[®].

Os corantes utilizados na preparação das soluções de calibração eram todos de grau analíticos P. A. fabricados pela *Sigma-Aldrich*.

Resultados e Discussão

Curvas analíticas dos três corantes estudados foram construídas na faixa de 2 a 10 mg L⁻¹ e usadas para estimar a concentração dos mesmos em cinco amostras sintéticas de cada corante.

Os resultados obtidos com o microssistema proposto são apresentados na **Tabela 1**, a qual traz também os valores das concentrações obtidas usando um procedimento convencional empregando um espectrômetro com arranjo de fotodiodos da HP, modelo 8453.

Tabela 1. Concentrações médias estimadas (n = 3) nas análises de corantes em amostras sintéticas, usando o microflow-batch proposto (μFB) e o procedimento convencional (HP).

	17-1		1
Amostras	Valor Esperado. (mg.L ⁻¹)	Valor Predito (mg.L ⁻¹)	
		μFB	HP
Vermelho 40	5.30	$5.36 \pm 2 \times 10^{-3}$	5.52 ± 5×10 ⁻⁴
	7.20	$7.00 \pm 1 \times 10^{-3}$	$7.19 \pm 6 \times 10^{-3}$
	8.80	$9.19 \pm 7 \times 10^{-3}$	8.69 ± 7×10 ⁻⁴
	2.50	$2.55 \pm 7 \times 10^{-3}$	2.64 ± 3×10 ⁻⁴
	9.40	9.66 ± 2×10 ⁻³	9.36 ± 6×10 ⁻⁴
Tartrazina	5.80	$5.68 \pm 6 \times 10^{-3}$	5.97 ± 1×10 ⁻³
	7.20	$6.93 \pm 6 \times 10^{-3}$	7.22 ± 5×10 ⁻⁴
	9.80	$10.34 \pm 1 \times 10^{-2}$	$10.05 \pm 7 \times 10^{-4}$
	2.80	2.91 ± 4×10 ⁻³	2.94 ± 6×10 ⁻⁴
	4.60	$4.68 \pm 6 \times 10^{-3}$	4.77 ± 7×10 ⁻⁴
Amarelo Crepúsculo	5.20	$5.20 \pm 5 \times 10^{-3}$	5.26 ± 1×10 ⁻⁴
	6.80	$6.91 \pm 1 \times 10^{-3}$	6.92 ± 2×10 ⁻⁴
	9.20	$9.29 \pm 8 \times 10^{-3}$	9.39 ± 6×10 ⁻⁴
	3.80	$3.95 \pm 6 \times 10^{-3}$	$3.84 \pm 2 \times 10^{-4}$
	2.60	$2.56 \pm 2 \times 10^{-3}$	$2.58 \pm 3 \times 10^{-5}$

Aplicando-se o teste *t*-emparelhado, com 95% de confiança, foi verificado que não existe diferença significativa entre os resultados obtidos pelo método de referência e pelo método proposto.

Conclusões

O sistema *microflow-batch* proposto mostrou-se bastante adequado para realização de análises espectrométricas de corantes de forma rápida (100 amostras por hora) e com baixíssimo consumo de reagentes e amostra (cerca de 120µL por análise).

Agradecimentos

CNPq, LAQA, UFPB.

¹ Universidade Federal da Paraíba – Departamento de Química – CCEN
Palavras Chave: Microssistema, uretana-acrilato, flow-batch, espectrometria, corantes alimentícios.

Wooley, A. T.; Lao, K.; el al.; Anal. Chem. 1998, 70, 684.

² Honorato, R.S; et al.; Anal. Chim. Acta. 1999, 91, 396.

³ Fernandes, J. C.; Ferreira, L.; J. Braz. Chem. Soc. 2006, 17, 643.