Imobilização de As(III) sobre gibbsita: evidência do mecanismo a partir de combinação de EXAFS e cálculos teóricos

Graziele Duarte(PG)¹, Virgínia S. T. Ciminelli(PQ)¹, Maria S. S. Dantas(PQ)¹, Igor Vasconcelos(PQ)³, Kwadwo Oseo-Asare(PQ)⁴, Augusto F. Oliveira(PQ)², Hélio A. Duarte(PQ)²

¹Departamento de Metalurgia e Materiais – E.E., UFMG, 31270-901 – Belo Horizonte – MG, Brasil. ²Departamento de Química – ICEx, UFMG, 31270-901 – Belo Horizonte – MG, Brasil. ³Departamento de Engenharia Metalúrgica e de Materiais – UFC, Fortaleza – CE, Brasil. ⁴Department of Materials Sciences – Pennsylvannia State University, USA.

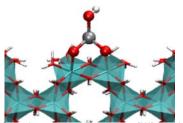
Palavras Chave: As(III), DFTB, gibbsita, EXAFS.

Introdução

Imobilização de arsênio em oxi-hidróxidos de ferro e alumínio tem sido objeto de muita pesquisa nos últimos anos. Muitos destes estudos têm indicado que o oxi-hidróxido de ferro são mais eficientes na remoção de arsênio em soluções que as fases de alumínio análogas. Porém, arsênio é eventualmente liberado no meio ambiente devido a dissolução redutiva do oxi-hidróxido de Fe(III) enquanto oxihidróxidos de Al(III) não são fortemente afetados por processos de redox. Portanto, a compreensão do mecanismo em que espécies de arsênio interagem com a superfície da gibbsita é de grande relevância para predizer e controlar a sua distribuição em ambientes aguosos. Porém, muitos destes estudos têm focalizado as espécies de As(V). Em um trabalho conclusivo, Ladeira et al. (2001) elucidou o mecanismo da imobilização de As(V) em gibbsita. Resultados de EXAFS e DFT demonstraram que As(V) forma preferencialmente um complexo de esfera interna bidentado binuclear sobre a superfície. Em relação as espécies de As(III), em vista da sua maior toxicidade e mobilidade em solos quando comparado as espécies de As(V), há um grande interesse ambiental em relação a sua distribuição em meio aquoso. Porém poucos estudos tem focalizado sobre a imobilização de As(III) em gibbsita.

Neste trabalho, a técnica experimental de EXAFS e cálculos DFTB-SCC foram utilizados de forma a trazer novas informações a respeito do mecanismo de retenção de As(III) em gibbsita.

Resultados e Discussão


Três amostras foram estudadas a partir da técnica de EXAFS. A amostragem foi realizada em diferentes pHs (5, 7 e 9). Os resultados dos ajustes dos dados de EXAFS estão mostrados na tabela 1.

Cálculos SCC-DFTB foram realizados para diferentes sítios de adsorção e em relação aos mecanismos ácido/base (ab) ou não dissociativo (nd) como proposto por Oliveira (2006).

Tabela 1. Resultados dos ajustes dos dados de EXAFS

Camad	R(Å)	N	$\sigma^2 (\mathring{A}^2)$	$\Delta E_0 (eV)$
а				
As-O	1.77 ± 0.01	3.3	0.004	10.0
As-Al ₁	3.22 ± 0.05	2	0.011	10.9

Um modelo de *slab* foi utilizado e, para garantir que os resultados para diferentes complexos de adsorção possam ser diretamente comparados, moléculas de H₂O ou –OH foram adicionadas de forma a manter a carga neutra e o número de coordenação dos centros de alumínio. O site de adsorção mais favorável é o bidentado-binuclear em um mecanismo ácido/base (figura 1.). As distâncias As-O e As-Al foram estimados em 1.75 e 3.24 Å, respectivamente, em excelente acordo com os dados experimentais. Os outros sítios de adsorção são pelo menos 50 kcal.mol⁻¹ mais alto em energia.

Figura 1. Sítio de adsorção de As(III) mais favorável na gibbsita de acordo com os cálculos SCC-DFTB.

Conclusões

O mecanismo de adsorção de As(III) em gibbsita na faixa de pH entre 5-9 foi estabelecido a partir de cálculos teóricos SCC-DFTB e através de dados de EXAFS. A relativa maior mobilização do As(III) em relação ao As(V) ainda precisa ser melhor compreendido.

Agradecimentos

Instituto Nacional de Ciência e Tecnologia de Recursos Minerais, Água e Biodiversidade – ACQUA; CNPq; CAPES e FAPEMIG.

¹ Ladeira, A. C. Q.; Ciminelli, V. S. T.; Duarte, H. A.; Alves, M. C. M.; Ramos, A. Y.; Geoch. Cosmoch. Acta. **2001**, 65, 1211.

² Oliveira, A. F.; Ladeira, A. C. Q.; Ciminelli, V. S. T.; Heine, T.; Duarte, H. A., J. Mol. Struct.: Theochem, **2006**, 762, 17-23.