APLICAÇÃO DE **PROCESSO** OXIDATIVO FOTO-FENTON EM EFLUENTES CONTENDO FENOL

Agnes Janaína Tezotto(IC), Maria do Carmo Guedes¹(PQ)*

* guedes carmo@hotmail.com

Faccamp - Faculdade de Campo Limpo Paulista-São Paulo

Palavras Chave: Fenol, Foto-Fenton, ,Ttratamento de efluentes, Processos Oxidativos Avançados.

Introdução

O crescimento das indústrias químicas tem contribuído para a contaminação ambiental através do descarte de efluentes com compostos tóxicos em corpos receptores. Os sistemas aquáticos estão entre os que sofreram os maiores danos nas ultimas décadas. O fenol está presente nos efluentes industriais como de plásticos, resinas e corantes, entre outros. Possui um grande potencial poluidor, considerado como classe de contaminantes aquáticos desde 1976 pela EPA devido à sua persistência e bioacumulação nos organismos aquáticos, gerando extrema preocupação e estimulando que medidas urgentes sejam tomadas com relação não só ao tratamento como à minimização dos resíduos¹. Além agravantes, o fenol não é facilmente biodegradável e muitas vezes pode ser um interferente no tratamento convencional de efluentes. Diante disso, o fenol merece uma atenção especial quanto ao seu tratamento.Entre os Processos Oxidativos Avançados (POA), o método de Fenton é bastante eficiente por ser uma poderosa fonte de radicais OH [com elevado potencial de oxi-redução (2.8V)] , a partir da mistura de sais de ferro e peróxido de hidrogênio (Eq 1).

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH^-$$
 (1)

Esse processo é capaz de aumentar a eficiência na degradação dos compostos orgânicos devido à contínua regeneração do ferro (II) via foto-redução do ferro (III) (Eq. 2). Fe $^{3+}$ + H₂O₂+ h ν \rightarrow Fe $^{2+}$ + 2 •OH

$$Fe^{3+} + H_2O_2 + h\nu \rightarrow Fe^{2+} + 2 \cdot OH$$
 (2)

Por ser muito solúvel em água, o fenol constitui um sério contaminante para o meio ambiente. Seus derivados podem provocar a morte de peixes. O objetivo do estudo é demonstrar a eficiência de remoção de fenol em efluente aguoso, em escala de laboratório, pelo método de Foto-Fenton.

Empregaram-se dois tipos de matriz: (1) padrão de fenol com concentração teórica de 130 mg/L de C₆H₅OH; (2) afluente da Estação de Tratamento de Esgoto de Jundiaí (ETEJ) fortificada com padrão de fenol. As concentrações no reator foram de $0,0896g/L \text{ Fe}^{2+} \text{ e } 2,6g/L \text{ de } H_2O_2 \text{ (1:29)} \text{ e relação}$ (1:20) de $C_6H_5OH: H_2O_2$. A fonte de emissão

radiação UV foi uma lâmpada de UV-C de 5W. O tempo total foi de 180 minutos, com retirada de alíquotas no tempo de 0 minuto e 90 minutos. Cada experimento foi repetido três vezes. Paralelamente, procederam-se às análises de DBO e DQO, antes e após tratamento.

Resultados e Discussão

Os resultados obtidos para o sistema Foto-fenton com Fe²⁺ estão resumidos na Tabela 1.

Tabela 1. Resultados obtidos no Sistema Fenton (Fe^{2+}/H_2O_2) nos tempos (T) de retirada de alíquotas de 0, 90 e 180 minutos de padrão (P) / efluente fortificado (EFF)

Т	Fenol mg/L C ₆ H ₅ OH	DQO mg/L O ₂	DBO mg/L O2
	M*	M*	M*
0	112,8 (P)	316 (P)	213 (P)
	119,2 (EFF)	904 (EEF)	576 (EEF)
90	1, 9 (P)	50 (P)	47 (P)
	4,9 (EEF)	476 (EEF)	206 (EEF)
180	0,04 (P)	48 (P)	43 (P)
	0,20 (EEF)	420 (EEF)	180 (EEF)

^{*} M= média dos valores dos três experimentos.

O exame dos valores obtidos mostra que fenol foi significativamente removido de ambas as amostras, melhorando em até 50% e 30%, respectivamente os valores de parâmetros das demandas biológica e química de oxigênio.

Conclusões

O estudo mostrou a eficiência da remoção de Fenol de efluentes por POA.

Agradecimentos

Os autores agradecem à FACCAMP pelo apoio e auxílio.

¹ Nogueira, R.F.P.; Modé, D.F.; Eclética Química, 2002, 27, 169.