O Efeito de Correlação Eletrônica no Método Monte Carlo Quântico: Uma Avaliação de Casos na Molécula de H₂

Leandro de Abreu^a (PG)* (leaabreu@iqm.unicamp.br), Rogério Custodio^a (PG), Wagner Fernando Delfino Angelotti^a (PG), José Roberto dos Santos Politi^b (PQ)

^aInstituto de Química – Unicamp, ^bInstituto de Química - UnB

Palavras Chave: Correlação eletrônica, Interação de configuração (CI), Métodos estocásticos, Monte Carlo Quântico.

Introdução e Objetivos

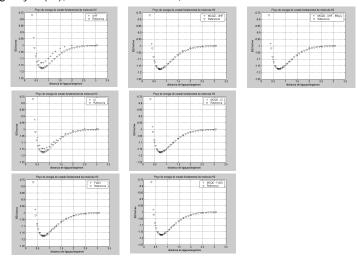
Métodos de uma única configuração, como o método Hartree-Fock, são desprovidos de correlação.

Desta maneira, estes métodos são ineficientes na descrição de poços de potencial de moléculas diatômicas, que são fortemente correlacionados da região entre a distância de equilíbrio e o limite de dissociação.

A forma mais comum que se encontra nos dias de hoje para contornar este problema é o uso de uma função de onda multiconfiguracional.

Uma alternativa para este problema é fazer uso de métodos estocásticos como o Monte Carlo Quântico de Difusão (MCQD).

Este trabalho procura mostrar a eficiência do método MCQD na descrição do poço de potencial de molécula H₂ considerando diferentes condições de simulação.


Resultados e Discussão

Foram construídos poços de potencial utilizando-se o método MCQD com várias funções de onda guia. Neste resumo, apresentamos os resultados obtidos com a função de onda guia UHF, UHF com 9 parâmetros de Boys, CI com 5 configurações RHF (CI) e Full CI construídas com uma base STO-TZ com polarização (p). Os coeficientes de combinação linear dos orbitais atômicos foram otimizados em cada geometria que os cálculos foram realizados.

Para cada cálculo MCQD realizado, realizou-se um cálculo Monte Carlo Quântico Variacional (MCQV) de 100.000 passos e 100 walkers, sendo que os cálculos MCQD foram realizados com 100 walkers iniciais e 1.000.000 de passos.

Os poços de potencial obtidos por MCQD, bem como o poço exato¹ e os poços obtidos através de cálculos UHF e CISD, para a molécula estão representados na figura 1.

Analisando-se o comportamento dos poços apresentados na figura 1, observa-se que os poços obtidos com os métodos UHF e CI, principalmente o UHF, sofrem com a incapacidade de recuperação da correlação, mas a recuperação de energia de correlação desempenhada pelo método MCQD foi

Figura 1. Poços de potencial exato e obtidos através de cálculos MCQD, UHF e CI.

quase que completa, comparando com o poço exato.

Na tabela 1 são apresentados algumas constantes espectroscópica que confirmam a qualidade dos resultados mostrados obtidos.

Tabela 1: Constantes espectroscópicas experimentais e obtidas por método MCQD					
Constante	Exp.	MCQD -	MCQD - UHF	MCQD -	MCQD -
		UHF	– 9Boys	CI	FullCI
r _e /A	0,74144	0,7478	0,7385	0,7388	0,7380
ω _e /cm ⁻¹	4401,21	4367,58	4410,54	4409,33	4444,92
ω _e x _e /cm ⁻¹	121,33	109,418	117,236	109,694	143,976
B _e /cm ⁻¹	60,853	59,3335	60,9008	60,6285	60,8309
α₀/cm ⁻¹	3,062	1,66999	3,18778	2,77555	3,02295

Conclusões

O método MCQD demonstrou ser capaz de recuperar grande parte da energia de correlação mesmo em condições modestas (UHF). Função de onda CI é importante na descrição da região entre a distância de equilíbrio e o limite de dissociação.

Agradecimentos

A Deus e também ao CNPq, FAPESP, CAPES, CENAPAD e UNICAMP.

¹ Kolos, W., Szalewicz, K.; Monkhorst. H.J., J. Chem. Phys.. **1986**, 84.3278.