Determinação dos Fatores de Emissão dos Compostos Orgânicos Voláteis de veículos a gasolina

Débora S. Alvim¹*(PG), Luciana V. Gatti¹(PQ), Anna Carolina F. Vilarubia¹(IC), Lucas G. Domingues¹(IC), Sérgio M. Côrrea²(PQ) *E-mail:deborasalvim@gmail.com*

Palavras Chave: poluição atmosférica, emissão veicular, gasolina

Introdução

A deterioração da qualidade do ar na RMSP, onde vivem 17 milhões de pessoas, é devido principalmente as emissões da frota de cerca de 8,4 milhões de veículos, que representam 97% da emissão de hidrocarbonetos (365 mil t/ano de HC)^[1]. Os compostos orgânicos voláteis (COVs) em conjunto com NOx, são os principais precursores de ozônio troposférico, sendo hoje o principal problema de poluição da RMSP. O objetivo deste trabalho é determinar os fatores de emissão dos COVs provenientes de veículos a gasolina.

Resultados e Discussão

Foram realizados estudos de emissão veicular, no Laboratório de Emissões Veiculares da CETESB em São Paulo, segundo a norma NBR 6601^[2], que utiliza dinamômetro em 3 fases diferentes de ensaio, simulando um veiculo em trânsito no percurso urbano. Foram estudados 2 veículos utilitários a gasolina fabricados em 2004 e 2005.

Cada fase do ensaio fica armazenada em sacos (3 fases e ar diluente). Foram coletados amostras destas fases em globos de aço inox de 6 litros, eletropolidos internamente e analisadas no LQA/IPEN, utilizando a técnica CG/MS/FID para a determinação dos compostos orgânicos voláteis (COVs) com pré-concentração criogênica, a identificação foi feita por espectrometria de massas e a quantificação por ionização de chama para os COVs >C4 e um CG/FID para COVs C2-C4. Os aldeídos foram analisados pela CETESB através da técnica de HPLC com detector UV.

Para a realização do cálculo do fator de emissão a concentração do gás em ppb foi transformada em massa emitida do gás Mg em cada fase, considerando o volume amostrado, sua densidade dg, e sua concentração Cg (ppb), considerando-se a diluição durante o teste.

Massa Total Mt do gás g:

 $Mtg=\{[0.43\times(Mgl+Mg2/Dl+D2)]\}+[0.57\times(Mg3+Mg2/D3+D2)]\}$ -Mg₁, Mg₂, Mg₃: massa em mg das fases 1, 2 e 3 e D₁, D₂, D₃: distância percorrida em cada fase (Km) 87 espécies de COVs foram determinadas, com uma emissão total de 119,5 mg/km para o veiculo

2004 e 144,2 mg/km para o 2005, onde os 15 COVs mais abundantes estão mostrados na tabela 1.

Tabela 1. Fatores de emissão (mg/km) dos 15 COVs mais abundantes encontrados nos veículos a gasolina.

Compostos	Ano fabricação do veículo	
	2004	2005
isopentano	6.44	10.24
tolueno	6.66	7.37
p-xileno	4.65	7.69
pentano	5.80	6.15
benzeno	3.35	6.72
hexano	5.67	4.20
acetaldéído	4.30	5.40
2-metil pentano	4.13	4.87
1,2,4-trimetilbenzeno	4.02	4.53
1-etil-4-metilbenzeno	3.66	4.22
o-xileno	2.53	4.51
m-xileno	2.62	4.30
heptano	3.70	3.01
metilciclopentano	2.39	3.58
etilbenzeno	2.32	3.10

Estes compostos estão entre os compostos mais abundantes em termos de massa encontrados na atmosfera da RMSP em um total de 74 COVs. Sendo que os compostos: acetaldeido, o,m,p-xileno, 1,2,4-trimetilbenzeno, 1-etil-4-metilbenzeno fazem parte do grupo dos 20 principais precursores de O₃ na cidade de São Paulo, num total de 73 COVs^[3].

Conclusões

Os alcanos foram os COVs encontrados em maior abundância na emissão a gasolina, representando uma média de 51,9%, seguido pelos aromáticos com 35,1%, alcenos 7,9%, aldeídos 4,9% e alcadienos 0,2%. Os compostos aromáticos, alcenos e aldeídos necessitam de uma atenção especial, pois são espécies mais reativas e pertencem ao grupo dos principais precursores de ozônio na RMSP.

Agradecimentos

ELEKTRO, CNPQ.

¹Instituto de Pesquisas Energéticas e Nucleares – CQMA – LQA,

²Universidade do Estado do Rio de Janeiro (UERJ).

 ¹ CETESB. Relatório da Qualidade do Ar no Est. SP -2007/2008.
² ABNT. Veículos rodoviários automotores leves – NBR 6601. 2005.
³ Orlando, J.P. Estudo dos Precursores de Ozônio na Cidade de São Paulo Através de Simulação Computacional. Dissertação de mestrado. IPEN/USP, 103pp. 2008.