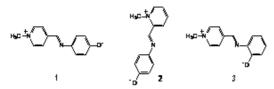
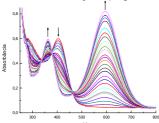
Quimiossensores cromogênicos derivados de bases de Schiff para a detecção seletiva de ânions em solução


Itamar Antonio Rodrigues (PG), Vanderlei Gageiro Machado (PQ) e Clodoaldo Machado (PQ)* clodo@furb.br

Departamento de Química, Universidade Regional de Blumenau, FURB, CP 1507, Blumenau, SC, 89010-971

Palavras Chave: quimiossensores cromogênicos, Bases de Schiff, detecção seletiva.

Introdução


Os corantes solvatocrômicos têm sido estudados na montagem de quimiossensores cromogênicos. 1,2 A gênese dos estudos baseia-se no fato de que soluções de corantes solvatocrômicos perdem sua coloração quando os mesmos são protonados, sendo que a adição de ânions pode levar ao reaparecimento da cor devido a abstração do próton do grupo doador de elétrons do corante causada pela atuação do ânion como uma base. Em estudos anteriores³ demonstramos que os corantes derivados de bases de Schiff (BS) 1-3 detectar demonstraram sensibilidade para presença de alguns ânions em solução.

No presente trabalho apresentamos os estudos detalhados para a determinação das constantes de ligação corante:ânion, propondo assim um modelo que justifique os resultados obtidos.

Resultados e Discussão

Nos estudos prévios³ identificamos quais ânions foram capazes de causar um reaparecimento da coloração quando adicionados às soluções das BS **1-3** em acetonitrila, e para estes pares foram realizados estudos de titulação (Figura 1).

Fig. 1. Espectros de UV/Vis a 25℃ da BS3H com adições crescentes do ânion fluoreto.

Os dados de absorbância obtidos para a banda solvatocrômica do corante foram utilizados no cálculo das constantes de ligação do corante com o ânion $K_{1:1}$ e $K_{1:3}$ para estequiometrias 1:1 e 1:3, respectivamente (Tabela 1).

Tabela 1: Constantes de ligação dos compostos BS1-BS3 com os ânions F⁻ e AcO⁻.

Corante	Ânion	K _{1:1} /dm ³ .mol ⁻¹	K _{1:3} /dm ⁹ .mol ⁻³
BS1	F ⁻	-	(1,17±0,03)×10 ¹³
BS1	AcO-	(6,83±0,39)×10 ⁴	(2,92±0,60)×10 ⁷
BS2	F ⁻	(1,61±0,31)×10 ⁴	(1,18±0,06)×10 ⁸
BS2	AcO-	(2,95±0,84)×10 ⁴	(1,50±0,79) ×10 ⁸
BS3	F ⁻	(1,49±0,52)×10 ³	(8,25±2,24)×10 ⁸
BS3	AcO-	(1,49±0,09)×10 ⁵	(7,38±1,89)×10 ⁸

A Figura 2 apresenta o esquema proposto para regeneração da coloração característica dos corantes solvatocrômicos.

$$H_1C-N$$
 H_1C-N
 H

Fig. 2. Esquema proposto para a interação do BS3 com o ânion A⁻ com estequiometria 1:1 e 1:3.

Conclusões

Os estudos efetuados permitiram demonstrar que a eficiência dos quimiossensores cromogênicos em solução está relacionada à acidez da BS utilizada e da basicidade do ânion. Os compostos têm potencial para a montagem de quimiossensores cromogênicos eficientes para a detecção de F⁻ e AcO⁻.

Agradecimentos

À FURB e ao CNPq.

¹ Zimmermann-Dimer, L. M.; Machado, V. G. *Dyes Pigm.* **2009**, *82*, 187-195.

² Zimmermann-Dimer, L. M.; Reis, D. C.; Machado, C.; Machado, V. G. *Tetrahedron* **2009**, *65*, 4239-4248.

³ Rodrigues, I. A.; Machado, V. G.; Machado, C. 31^a RA da SBQ,FQ030, Águas de Lindóia, SP, **2008**.