Metanona-*bis*(1*H*-benzimidazol): novos métodos de preparação, estrutura cristalográfica e cálculos DFT.

Fabrício G. Menezes (PG)¹, Fabio S. Miranda (PQ)^{1,2}, Juliano Vicente (PG)¹, Adaílton J. Bortoluzzi (PQ)¹, Ademir Neves (PQ)¹, Norberto S. Gonçalves (PQ)³ e César Zucco (PQ)¹* *czucco@fapesc.sc.gov.br

- 1 Departamento de Química, Universidade Federal de Santa Catarina, 88040-900;
- 2 Departamento de Química Inorgânica, Universidade federal Fluminense, 24021-150;
- 3 Departamento de Ciências Exatas e da Terra, Universidade Federal de São Carlos, Campus Diadema, 09972-270.

Palavras Chave: metanona-bis(1H-benzimidazol), preparação, estrutura cristalográfica, confôrmeros, cálculos DFT.

Introdução

Como parte de trabalho envolvendo novos blocos de construção para a preparação de moléculas funcionais, decidimos explorar a química de metanona-*bis*-(1*H*-benzimidazol)¹, <u>1</u>, reportada na literatura como efetiva contra determinados tipos de morte celular².

No presente trabalho são apresentadas duas novas metodologias para obtenção de 1, assim como sua caracterização completa, inclusive por cristalografia de raios-X. Além disso, foi realizado, via cálculos computacionais, um estudo correlacionando valores teóricos e experimentais relativos à caracterização de 1, além de uma investigação acerca do equilíbrio entre dois confôrmeros da respectiva cetona.

Resultados e Discussão

O composto $\underline{\mathbf{1}}$ foi preparado via oxidação da ponte metilênica do composto $\underline{\mathbf{2}}$ à cetona, por dois métodos: i) Fe(II)-O₂ em etanol-água e ii) H₂O₂ em ácido acético (Esquema 1), sendo que o método ii) se mostrou mais efetivo que o reportado na literatura².

i) [Fe(OH $_2$) $_6$](ClO $_4$) $_2$, EtOH/H $_2$ O, t.a., 48 h, 25 %. ii) H $_2$ O $_2$, AcOH, t.a., 24 h, 50%.

Esquema 1

A cetona $\underline{\mathbf{1}}$ teve sua estrutura determinada por cristalografia de raios-X (Figura 1), onde foi verificada ser uma molécula totalmente planar, cuja rede cristalina é estabilizada por ligações de hidrogênio intermoleculares. Ainda, foram verificadas interações do tipo π -stack da ordem de 3,4 Å entre os planos dos anéis.

Figura 1. Ilustração Zortep de 1.

Cálculos computacionais DFT

Os cálculos teóricos foram realizados no programa Gaussian 03, utilizando o método B3LYP e um conjunto de bases 6-31+G(d,p).

Foram comparados os valores experimentais e teóricos das análises de cristalografia de raios-X e espectroscopias vibracionais (IV e Raman) e RMN (¹H e ¹³C), os quais apresentaram excelentes resultados.

Por fim, foi estudada a interconversão entre duas formas de conformação da cetona <u>1</u> (Esquema 2). Tanto em fase gasosa quanto aquosa foi verificada que a forma FI é mais estável que FII por 2,53 kcal.mol⁻¹ e 0,03 kcal.mol⁻¹, respectivamente. Já em dmso, a forma FII é mais estável que FI por 0,41 kcal.mol⁻¹. Esses baixos valores da energia de Gibbs relativos às rotações indicam a fácil interconversão das formas FI e FII. É importante salientar que no estado sólido, a cetona <u>1</u> foi obtida como FI.

Conclusões

O composto <u>1</u> foi preparado por duas novas metodologias (umas das quais se mostrou mais eficiente que o método reportado na literatura), teve sua estrutura determinada por cristalografia de raios-X. Os cálculos computacionais foram precisos aos relacionarem valores teóricos e experimentais, assim como mostraram baixa barreira energética entre as formas FI e FII de <u>1</u>. Ainda, a estabilidade de cada confôrmero é dependente do solvente.

Agradecimentos

UFSC, LEM-USP, FAPESC, CAPES e CNPq.

² Bitler, C.M. *et al.* Patente US 6541486, **2004**.

33ª Reunião Anual da Sociedade Brasileira de Química

¹ Miranda, F.S. et al. J. Mol. Struct. **2009**, 938, 1.