Estudo avaliativo de tratamento térmico como procedimento para determinação do teor de mercúrio elementar em amostra de solo

Cláudia Carvalhinho Windmöller¹ (PQ), Walter Alves Durão Júnior¹ (PG)

claudia@zeus.qui.ufmg.br

¹Departamento de Química, ICEX, UFMG – Av. Antônio Carlos, 6627 – 31270-901 Belo Horizonte, Minas Gerais.

Palavras Chave: Mercúrio, termodessorção, Geração de Hidretos, solos.

Introdução

A aplicação do tratamento térmico como meio para determinar o mercúrio elementar tem sido trabalhada por muitos pesquisadores. Leachler e colaboradores¹ afirmaram que 180 °C por 48 horas é condição suficiente para eliminar mercúrio elementar de alguns solos. Nesta condição de aquecimento cerca de 90% do mercúrio total foi volatilizado. Considerou então que todo este volatilizado era Hg⁰. Estudos volatilização do Hg consideram como condição ideal para remoção do Hg⁰ por tratamento térmico, o aquecimento de 80 °C por 8 horas, embora eles mesmos trabalhando com padrões de Hg. mostraram que essa condição ocorre volatilização de HgCl₂.² O objetivo deste trabalho é de analisar a eficiência do tratamento térmico como técnica de determinação indireta do mercúrio elementar em solos contaminados. Neste estudo analisou-se uma amostra de referência certificada (Montana Soil 2711). O teor de Hg eliminado pelo tratamento foi obtido pela diferença entre o teor de Hg total e o teor de Hg obtido após o aquecimento de uma amostra certificada. Utilizou-se a técnica de termodessorção acoplada a um espectrômetro de absorção atômica (TD AAS) para especiação de Hg e o sistema de geração de Hidretos acoplado a um espectrômetro de absorção atômica (HG AAS) para quantificação de Hg total. A abertura das amostras para quantificação de Hg total foi feita com água régia.

Resultados e Discussão

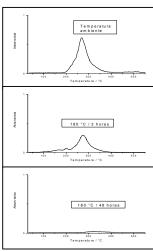

A tabela 1 mostra os valores de Hg total quantificado por HGAAS obtidos na amostra de solo certificada.

Tabela 1 – Concentrações de mercúrio total da amostra certificada (Montana Soil – 2711), na amostra sem o tratamento térmico e na amostra tratada termicamente (180 °C por 48 horas).

(<u>100 0 por 10 nordo).</u>		
Valor	Valor	Valor obtido
Certificado	Obtido	depois do
C _{Hg} / (mg kg ⁻¹)	C _{Hg} / (mg kg ⁻¹)	tratameto térmico
		C _{Hg} / (mg kg ⁻¹)
6,25 ± 0,19	5,97 ± 0,29	0.59 ± 0.09

A recuperação do mercúrio no material certificado, com abertura com água régia foi de 95,5%. Se for considerado que todo mercúrio volatilizado através do tratamento térmico é Hg⁰, o método utilizado sugere que há a predominância do mercúrio elementar na amostra certificada (cerca de 90%).

A figura 1 apresenta os termogramas da amostra certificada (Montana Soil 2711), sem o tratamento térmico e tratado termicamente a 180 °C por 3 e 48 horas.

Figura 1. Termogramas da amostra de solo certificada (Montana Soil - 2711) submetida previamente a diferentes condições.

Estudos feitos por Valle e colaboradores⁴ em amostras de solos dopadas com diferentes espécies de mercúrio mostram que o Hg⁰ é liberado desde a temperatura ambiente até cerca de 200 °C. O íon mercúrico é liberado em temperaturas superiores a 200 °C. Percebe-se na figura 1 (temperatura ambiente) que o sinal de mercúrio apareceu a cerca de 200 °C, indicando que a amostra possui predominantemente Hg^{2+} . O aquecimento faz com que o Hg seja reduzido, e depois o Hgº é volatilizado O aquecimento da amostra por 3 horas a 180 °C deixa claro esta tendência de redução do estado de oxidação do mercúrio. Nesta figura o sinal de dessorção do mercúrio surge a cerca de 100 °C. Quando a amostra foi submetida a 48 horas de aquecimento a 180 °C praticamente guase todo o Hg²⁺ foi reduzido e volatilizado.

Conclusões

Embora cerca de 90% do mercúrio tenha sido volatilizado a 180°C por 48 horas, o estudo de especiação mostrou que a espécie predominante na amostra estudada é Hg^{2+} e que o aquecimento promove a redução do metal e posteriormente sua volatilização.

Agradecimentos CNPq e Fapemig

¹ Lechler, P.; Miller, J.; Hsu, L.; Desilets, M. Journal of Geochemical Exploration. **1997**, 58, 259 – 267.

Sladek, C.; Gustin, M.S. Applied Geochemistry. 2003, 18, 567 – 576.
Valle, C. M.; Santana, G. P.; Windmöller, C. C. Chemosphere. 2006, 65, 1966 – 1975.