Quantificação de compostos ativos em loções fotoprotetoras por Cromatografia Líquida de Alta Eficiência

Livia Maniero Peruchi¹ (PG) e Susanne Rath¹ (PQ) *Iperuchi@iqm.unicamp.br*

Palavras Chave: filtros solares, protetores solares, HPLC

Introdução

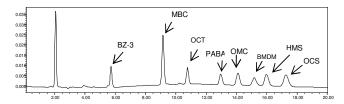
Os efeitos danosos da radiação ultravioleta (UV) e a proteção contra ela têm recebido grande interesse público. A exposição crônica à radiação UV é considerada a principal causa de problemas de pele como: queimaduras, eritemas, envelhecimento precoce e câncer¹.

Filtros solares são compostos químicos adicionados às formulações cosméticas e tem a função de absorver a radiação UV solar, reduzindo assim, a dose de radiação nociva na pele².

A Cromatografia Líquida de Alta Eficiência (HPLC) tem sido a técnica mais recomendada para a quantificação de filtros solares em cosméticos, devido ao grande número de filtros solares permitidos e à complexidade das amostras em quem eles estão incorporados.

O objetivo do presente trabalho foi desenvolver um método cromatográfico para determinação dos filtros solares benzofenona-3 (oxibenzona) (BZ3), octil dimetil PABA (Padimato-O) (PABA), benzilideno cânfora (MBC), octocrileno (OCT), octil salicilato (OCS), homosalato (HMS), butil metoxidibenzoilmetano (BMDM) octil metoxicinamato (OMC), e aplicá-lo em diferentes amostras disponíveis comercialmente.

Resultados e Discussão


Utilizou-se um cromatógrafo à líquido equipado com sistema de bombeamento binário modelo 1525 (Waters), injetor manual Rheodyne modelo 7725 com alça de amostragem de 50 μ L, associado a um detector de arranjo de diodos PDA 2996 (Waters).

As condições cromatográficas foram: coluna ACE $^{\$}$ 5 C18 (250 x 4,6 mm, 5 μ m), fase móvel constituída de metanol (MeOH):água 88:12 v/v com vazão de 1,0 mL min $^{-1}$, totalizando 16 minutos de corrida.

O método foi validado para todos os compostos de acordo com o procedimento descrito pela ANVISA e os resultados obtidos estão dentro da faixa considerada adequada para o objetivo a que o método se propõe.

O preparo da amostra constituiu na dissolução das amostras em metanol em ultrassom e centrifugação. Anterior à análise cromatográfica as soluções foram diluídas com fase móvel e filtradas

(0,22 µm). Todas as amostras analisadas têm fator de proteção solar (FPS) 30.

Figura 1. Cromatograma característico obtido para a separação de BZ-3, PABA, OCT, OCS, HMS, BMDM, MBC e OMC em seus comprimentos de onda máximo de absorção. Coluna analítica ACE[®] 5 C18.

Tabela 1. Resultados obtidos na análise dos compostos ativos de formulações fotoprotetoras (amostras A à G).

	Filtros solares (%, m/m) (média de 3 replicatas)							
	BZ3	PABA	OCT	ocs	HMS	BMDM	MBC	OMC
Α	-	-	-	-	-	-	-	5,62
В	-	-	9,56	-	-	2,26	-	-
С	3,07	7,87	-	-	-	1,81	-	-
D	-	-	0,94	-	-	-	-	7,03
E	-	-	9,59	1,93	-	4,46	-	-
F	-	-	9,97	-	-	3,87	-	-
G	-	-	9,45	-	-	3,48	-	-

Os desvios padrão relativos (RSD) variaram de 0,40 – 4,79%.

Conclusões

O método desenvolvido é adequado para a quantificação de compostos ativos de várias formulações fotoprotetoras disponíveis comercialmente. Os compostos identificados na análise estão de acordo com os especificados no rótulo das embalagens e as concentrações estão dentro da faixa máxima permitida pela ANVISA.

Agradecimentos

FAPESP e CAPES

Departamento de Química Analítica – Instituto de Química / UNICAMP – Campinas, Brasil.

¹ Chisvert, A.; Pascual-Marti, M. C.; Salvador, A., J. of Chromatography, 2001, 921, 207-215.

² Scalia, S., J. of Chromatography, **2000**, 870, 199-205.