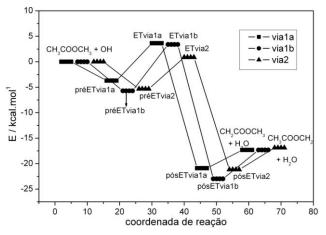
Estudo das vias de reação dos acetatos de metila e etila com radicais OH usando cálculos de estrutura eletrônica.

Noriberto Araújo Pradie¹ (PG)*, Harrald Victor Linnert¹ (PQ) *noribert@iq.usp.br

1-Instituto de Química- USP, Av. Prof Lineu Prestes, 748, Butantã, São Paulo, S.P., CEP 05508-900, Brasil.

Palavras Chave: acetatos, radicais OH, DFT, ab-initio, barreiras de energia.


Introdução

Os acetatos são emitidos na combustão incompleta do biodiesel¹, são produzidos na natureza pelos vegetais, e são utilizados na indústria. Esses compostos são passíveis de reações por espécies radicalares e átomos^{2,3} na atmosfera. Nas reações de acetais com o radical OH, observa-se que o radical reage majoritariamente por abstração de átomo de H na terminação alcóxi². Para o acetato de etila³, o radical OH ataca predominantemente a função –CH₂- e em menor extensão o grupo –CH₃-. Neste trabalho pretende-se identificar as estruturas das espécies envolvidas nas reações dos acetatos de metila e etila com radicais OH, e estudar sua termoquímica e cinética utilizando *métodos ab-initio* e Funcional de Densidade.

Resultados e Discussão

As vias estudadas foram as seguintes: $\begin{array}{c} \text{CH}_3\text{COOCH}_3 + \text{OH} & \rightarrow \text{CH}_2\text{COOCH}_3 + \text{H}_2\text{O} & \text{via1} \\ \text{CH}_3\text{COOCH}_2 + \text{H}_2\text{O} & \text{via2} \\ \text{CH}_3\text{COOCH}_2\text{CH}_3 & \rightarrow \text{CH}_3\text{COOCH}_2\text{CH}_2 + \text{H}_2\text{O} & \text{via3} \\ \text{+ OH} & \text{CH}_3\text{COOCHCH}_3 + \text{H}_2\text{O} & \text{via4} \\ \text{CH}_2\text{COOCH}_2\text{CH}_3 + \text{H}_2\text{O} & \text{via5} \\ \end{array}$

Estruturas e energias foram obtidas com cálculos B3LYP/6-311++G(3df,p) e MP2/6-311++G(d,p), sendo que mais de uma possibilidade de caminho reacional foi observada para as vias 1, 3 e 5 (identificadas como caminhos a e b). Energias foram calculadas para o metil acetato e estão sendo calculadas para o etil acetato utilizando CCSD(T)/cc-pVTZ.

Figura 1. Energias CCSD(T)/cc-pVTZ||MP2/6-311++ G(d,p) + ZPE nas reações do acetato de metila.

33ª Reunião Anual da Sociedade Brasileira de Química

A Figura 1 apresenta as barreiras de energia para as reações com acetato de metila. As entalpias calculadas para o acetato de etila são apresentadas na Tabela 1. As barreiras de ativação obtidas com B3LYP são menores que aquelas obtidas com MP2, sendo que os valores obtidos com CCSD(T), para o acetato de metila, são intermediários.

Tabela 1. Entalpias a 298,15 K em relação ao acetato de etila, valores em kcal.mol⁻¹.

substância	B3LYP ^a	MP2 ^b
CH ₃ COOCH ₂ CH ₃ +OH	0	0
préETvia3a	-2,51	-4,12
ETvia3a	-1,89	4,67
pósETvia3a	-17,41	-20,70
préETvia3b	-4,31	-4,97
ETvia3b	-1,10	6,20
pósETvia3b	-17,28	-20,51
CH ₃ COOCH ₂ CH ₂ +H ₂ O	-15,64	-16,68
préETvia4	-4,97	-5,24
ETvia4	-5,13	1,64
pósETvia4	-25,98	-25,44
CH ₃ COOCHCH ₃ +H ₂ O	-22,07	-20,72
préETvia5a	-5,35	-5,29
ETvia5a	-1,38	5,53
pósETvia5a	-24,63	-24,97
préETvia5b	-2,51	-4,12
ETvia5b	-1,27	5,70
pósETvia5b	-22,16	-22,94
CH ₂ COOCH ₂ CH ₃ +H ₂ O	-20,22	-19,06

a: B3LYP/6-311++G(3df,p); b: MP2/6-311+G(d,p).

Conclusões

Apesar da diferença nos valores de barreira de ativação de acordo com o método de cálculo empregado, é possível observar que o ataque a terminação alcóxi em ambos os acetatos tem menor barreira de energia e que para o acetato de etila o ataque ao grupo CH₂ tem a menor barreira, resultados que estão de acordo com a reatividade observada experimentalmente^{2,3}. Todas as reações são exotérmicas.

Agradecimentos

CNPq, FAPESP, LCCA-USP

¹Doussin, J. F.; Jilibois, R. D.; Calier, P. Phys. Chem. Chem. Phys. **2001**, *3*, 2595.

²Boudali, A. El.; Calvé, S. Le; Bras, G. Le; Mellouki, A. *J. Phys. Chem.* **1996**, *100*, 12364.

³Picquet-Varrault, B.; Doussin, J-f.; Durand-Jalibois, R.; Carlier, P. *Phys. Chem. Chem. Phys.*, **2001**, *3*, 2595.