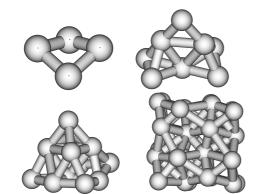
Interações intermoleculares entre catalisadores à base de platina e polímeros perfluorosulfônicos.

Robson Pacheco Pereira¹ (PQ), Ana Maria Rocco^{2,*} (PQ) <amrocco@eq.ufrj.br>

- 1. Grupo de Materiais Condutores e Energia, Rio de Janeiro, RJ, Brasil.
- 2. Grupo de Materiais Condutores e Energia, Escola de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco E, Cidade Universitária, Rio de Janeiro, RJ, Brasil.

Palavras Chave: Interface, célula a combustível, membrana, DFT.

Introdução


Em células a combustível de membrana polimérica (PEMFC), as reações eletrocatalíticas que convertem H_2 e O_2 , gerando uma corrente aproveitável e prótons (a serem conduzidos pela membrana), ocorrem na região próxima à interface entre a membrana polimérica, o catalisador e o suporte condutor [1]. A descrição molecular desta região, chamada de interface tripla, é fundamental para a compreensão da estrutura e dos processos que regem, em escala molecular e nanométrica, o funcionamento da PEMFC.

No presente trabalho, a estrutura de catalisadores de platina e modelos representativos da interação entre platina e polímeros perfluorosulfônicos é descrita utilizando-se cálculos baseados na Teoria do Funcional da Densidade (DFT).

Resultados e Discussão

Os cálculos DFT foram realizados empregando-se o potencial B3LYP e bases 6-31+G* (H, C, O, F, S) e LANL2DZ (Pt) em cálculos de otimização de geometria. Foram também realizados cálculos periódicos baseados na Teoria do Funcional da Densidade, visando comparar a estrutura dos clusters e demais sistemas estudados com modelos periódicos. Todos os cálculos foram realizados com o programa NWChem [2].

Na Figura 1 encontram-se as estruturas de menor energia obtidas para os *clusters* Pt₄, Pt₈ e Pt₁₂ e para a estrutura periódica Pt₃₂.

Figura 1. Estruturas dos *clusters* Pt₄, Pt₈ e Pt₁₂ e da estrutura periódica Pt₃₂.

Os cálculos periódicos realizados em sistemas de 1 e 4 células (contendo 4 e 32 átomos de platina) forneceram estruturas representativas do *bulk* da platina fcc. Parâmetros estruturais selecionados em ambas as descrições dos sistemas modelo encontram-se listados na Tabela 1.

Tabela 1. Distâncias (d) e ângulos (a) de ligação mínimos e máximos obtidos para os clusters (c) e sistemas periódicos (p).

Sisternas periodicos (p).					
S	istema	d _{min} (Å)	d _{max} (Å)	a _{min} (°)	a _{max} (°)
	Pt ₄ (c)	2.50811	2.50906	86.080	86.104
	Pt ₄ (p)	2.29317	2.38697	57.525	86.821
	Pt ₈ (c)	2.52098	2.87783	53.295	132.222
	Pt ₁₂ (c)	2.60633	2.73061	62.885	152.873
	Pt ₃₂ (p)	2.79441	3.16429	50.551	163.190

A interação entre o catalisador e o polímero perfluorosulfônico pode ser descrita por estruturas nas quais ocorre transferência de próton do grupo ácido sulfônico para um átomo na superfície do catalisador, utilizando os sistemas Pt_n (n = 4, 8, 12, 16) na ausência de água.

A formação de estruturas otimizadas (mínimo de energia local) com ligações O-Pt e Pt-H evidenciou a presença de intermediários estáveis durante a transferência de prótons da membrana polimérica para a superfície do catalisador. Na ausência de água, estas estruturas podem resultar em oxidação da superfície do catalisador enquanto, na presença de água e ácido dissociado (H⁺ ou H₃O⁺), estes intermediários não são formados, evitando a estabilização de estruturas com ligações O-Pt e favorecendo a formação de ligações Pt-H na superfície do catalisador.

Conclusões

A interação entre grupos R-SO₃H e platina (tanto em *clusters* quanto em sistemas periódicos) evidenciou a formação de intermediários estáveis com ligações O-Pt e Pt-H, os quais, em sistemas anidros, podem levar a oxidação da superfície dos catalisadores.

Agradecimentos

Rede de Células a Combustível/MCT, FAPERJ, CNPq.

¹ L. Carrette, K.A. Friedrich, U. Stimming, Fuel Cells, 2001, 1, 5.

² R.A. Kendall et al., Computer Phys Comm, **2000**, 128, 260.