Preparação e caracterização espectroscópica do poli(estireno-co-álcool alílico) sulfonado.

Gullit D.C. dos Anjos¹ (IC), Felipe A.M. Loureiro¹ (PG), Adney L.A. da Silva¹ (PG), Robson Pacheco Pereira² (PQ), Ana Maria Rocco^{1,*} (PQ) <amrocco@eq.ufrj.br>

- 1. Grupo de Materiais Condutores e Energia, Escola de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco E, Cidade Universitária, Rio de Janeiro, RJ, Brasil.
- 2. Grupo de Materiais Condutores e Energia, Rio de Janeiro, RJ, Brasil.

Palavras Chave: membranas, célula a combustível, condução protônica.

Introdução

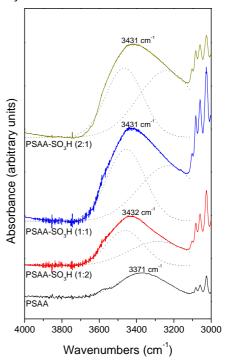
Células a combustível de membrana de condução protônica (PEMFC) têm sido largamente estudadas nos últimos trinta anos e visadas como fontes de energia veiculares e estacionárias [1]. Em particular, as membranas representam ainda um desafio tecnológico no avanço destes dispositivos.

No presente trabalho é apresentado o estudo por espectroscopia vibracional no infravermelho de membranas baseadas em poli(estireno-co-álcool alílico) sulfonado (PSAA-SO₃H).

Resultados e Discussão

O polímero PSAA-SO₃H foi obtido a partir da sulfonação do PSAA (Figura 1), utilizando-se diferentes razões entre o agente de sulfonação e o número de grupos estireno (1:2, 1:1 e 2:1), como descrito em trabalho anterior [2].

Figura 1. Estruturas do PSAA e do PSAA-SO₃H.


Após o procedimento de sulfonação [2], as amostras foram secas em estufa sob vácuo até massa constante e estudadas por espectroscopia vibracional no infravermelho (FTIR).

Os espectros FTIR dos polímeros PSAA-SO₃H apresentaram, em comparação ao polímero original (PSAA), bandas características do grupo sulfônico.

Observa-se, nos espectros vibracionais das amostras PSAA-SO₃H, uma banda intensa centrada em 1240 cm⁻¹, associada ao modo de estiramento assimétrico no grupo sulfônico. Adicionalmente, o aumento da largura desta banda está associado a contribuições do grupo sulfônico na forma neutra (SO₃H) e dissociada (SO₃⁻).

O espectro do PSAA apresenta uma contribuição na região entre 3000 e 3900 cm $^{-1}$, associada ao grupo hidroxila (álcool). Com a sulfonação, a banda associada ao modo $\nu(\text{OH})$ característica do álcool passa a apresentar contribuições características do ácido sulfônico, como mostrado na Figura 2. Na Tabela 1 encontram-se listadas as frações espectroscópicas associadas aos grupos OH álcool

e ácido, obtidas a partir da decomposição da banda OH em funções Gaussianas.

Figura 2. Espectros FTIR na região ν(OH). **Tabela 1.** Frações espectroscópicas associadas ao grupo OH.

9.4600		
Amostra	(-CH ₂)OH	(-SO ₂)OH
PSAA	1,00	
PSAA-SO ₃ H (1:2)	0,48	0,52
PSAA-SO ₃ H (1:1)	0,46	0,54
PSAA-SO ₃ H (2:1)	0,25	0,75

Conclusões

Neste trabalho foram obtidos polímeros sulfonados baseados no poli(estireno-co-álcool alílico). Estes estão sendo caracterizados por impedância eletroquímica е apresentam comportamento capacitivo-resistivo compatível com outras membranas sulfonadas estudadas pelo grupo.

Agradecimentos

Rede de Células a Combustível/MCT, FAPERJ, CNPq/PIBIC, CNPq.

L. Carrette, K.A. Friedrich, U. Stimming, Fuel Cells, 2001, 1, 5.

² A.L.A. Silva, I. Takase, R.P. Pereira, A.M. Rocco, Eur. Polym. J., 2008, 44, 1462.