Fotoatividade de estruturas nanotubulares de TiO₂ em função das condições térmicas durante a cristalização do óxido

Camila Pedrosa Ferreira¹ (IC)*, Rita Helena Buso Jacon² (TC), Rodnei Bertazzoli¹ (PQ), Christiane de Arruda Rodrigues² (PQ)

¹ FEM -UNICAMP – Caixa Postal 6122, CEP: 13083-970. Campinas-SP, Brasil. *E-mail: milaferreira88@gmail.com. ² Departamento de Ciências Exatas e da Terra, UNIFESP - Campus Diadema - CEP: 09972-270 - Diadema-SP –Brasil.

Palavras Chave: nanotubos de TiO2, fotoeletrocatálise heterogênea, tratamento témico, fotoatividade.

Introdução

A tecnologia de Processos Oxidativos Avançados (POA) tem se mostrado um método eficiente no tratamento de águas e efluentes industriais. Dentre os tipos de POA, destaca-se a fotocatálise heterogênea (FH), que envolve a formação de radical hidroxila (*OH) a partir da irradiação UV em um fotocatalisador, geralmente um semicondutor do tipo TiO₂.

Visando aumentar a eficiência da FH na degradação de compostos orgânicos, este trabalho apresenta a análise de diferentes condições de tratamento térmico para cristalização de nanotubos de TiO₂. E para isso, foram feitos estudos sobre a fotoatividade desses semicondutores cristalizados com diferentes tratamentos térmicos.

Resultados e Discussão

A obtenção dos nanotubos foi feita via processo de anodização, no qual foram produzidas nanoestruturas de ${\rm TiO_2}$ com cerca de 350nm de

comprimento, 80nm de diâmetro interno e 110nm de externo (Figura 1).

Figura 1. MEV-FEG
- Ti anodizado com
HF(aq) 0,3%m/m, 2h
de ensaio a 20V.

Após a anodização, os óxidos foram submetidos a diferentes temperaturas de cozimento, sob atmosfera ambiente e de O_2 (fluxo de 1,5 L/h) durante todo o tratamento térmico. A Tabela 1 e Figura 2 mostram as fases obtidas nas condições de temperatura avaliadas.

Tabela 1. Identificação da fase cristalina do óxido em função da temperatura. A(anatase) e R(rutilo).

T (℃)	350	450	450 O ₂	550	550 O ₂	650 O ₂
Fase Cristalina		Α	Α	A/R	A/R	R

³³ª Reunião Anual da Sociedade Brasileira de Química

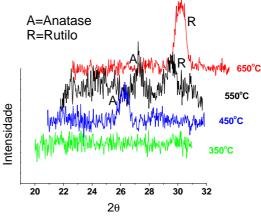
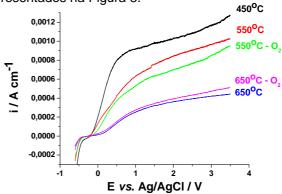



Figura 2. DRX sob diferentes temperaturas.

Os ensaios de fotoatividade foram realizados empregando a técnica de voltametria linear, em uma solução 0,1 M Na₂SO₄, pH 2,0 e lâmpada de vapor de mercúrio de 80W. Os resultados são apresentados na Figura 3.

Figura 3. Voltametria linear sob diferentes tratamentos térmicos.

Conclusões

O eletrodo que apresentou a melhor atividade fotoativa foi o tratado a 450°C, que apresenta apenas anatase em sua estrutura cristalina. Além disso, comprovou-se que a presença de fluxo de ${\rm O}_2$ durante a cristalinidade do óxido não potencializou sua fotoatividade.

Agradecimentos

FAPESP; LNLS; DEMA/FEM/UNICAMP.

¹ Mor, G.K et al. Solar Energy Mat. & Solar Cells 90 (2006) 2011.