Estudos visando à síntese do fragmento C₁-C₆ da (-)-putaminoxina

Bruno T. Vilalba (IC), Graziela G. Bianco (PQ), Luiz S. Longo Jr* (PQ).

luiz.longo@unifesp.br

Universidade Federal de São Paulo, CEP 09972-270, Diadema - SP - Brasil

Palavras Chave: decalactonas, putaminoxina, resolução enzimática, CALB.

Introdução

Lactonas de anel médio (8 a 11 membros) são alvos sintéticos importantes e unidades estruturais presentes em um grande número de produtos naturais. Como exemplos de decalactonas naturais podemos citar a putaminoxina (Figura 1), isolada e extraída do fungo *Phoma putaminum*, sendo um policetídeo substituído em C₉ com um grupo n-propila, o qual apresenta atividade fitotóxica significativa *in vitro*. ²

$$(-)$$
-putaminoxina (R) (R)

Figura 1. (–)-putaminoxina.

Neste trabalho, apresentamos os resultados parciais obtidos na preparação do fragmento C_1 - C_6 [ácido (S)-5-hidróxi-hept-6-enóico], utilizando como etapa chave a resolução cinética enzimática do álcool alílico (\pm)-4 mediada por CALB (C andida antarctica lipase), conforme descrito a seguir.

Resultados e Discussão

A síntese do fragmento C_1 - C_6 iniciou-se com a reação de proteção do 1,5-pentanodiol (1) com cloreto de t-butil-dimetil-silila (TBSCI) em THF, levando ao álcool monoprotegido 2 em 54% de rendimento. Em seguida, 2 foi oxidado ao aldeído 3, utilizando condições de Swern, seguido da reação com brometo de vinilmagnésio em THF, levando ao álcool racêmico (\pm)-4 em 45% de rendimento para as duas etapas (Esquema 1).

Reagentes e condições: a) 1) NaH, THF, ta, 45min; 2) TBDMSCI, ta, 45min; b) 1) (COCI)₂, DMSO, CH₂CI₂, -78° C, 20min; 2) Et₃N, -78° C \rightarrow ta, 75min; c) brometo de vinil magnésio, THF, N₂, 0 $^{\circ}$ C, 80 min.

A CALB foi escolhida para a etapa de resolução, uma vez que esta enzima apresentou bons resultados na resolução de alcoóis alílicos.³

A Tabela 1 apresenta os resultados obtidos na obtenção de (–)-4 e de (–)-5, a partir de (±)-4. A configuração absoluta atribuída aos compostos 4 e 5 foi baseada na regra de Kazlauskas.⁴

Tabela 1. Resolução cinética enzimática de (±)-4.

		Álcool (R)-4		Acetato (S)-5	
Entrada	Tempo	ee ^a (%)	$[\alpha]_D^{20}$	ee ^a (%)	$[\alpha]_D^{20}$
1	1h20	43	-3,2	98,5	-7,1
2	5h	60	-5,3	98	-7,7
3	24h	99	-6,0	91	-5,9
4	48h	>99,9	-6,8	77	-5,3

 ^{a}ee determinado em CG quiral: coluna β -ciclodextrina, t_i=100 $^{\circ}$ C, rampa: 2 $^{\circ}$ C/min; t_i=180 $^{\circ}$ C.

A entrada 3 apresenta o melhor resultado observado, sendo que tanto o álcool (*R*)-(-)-4, quanto o acetato (*S*)-(-)-5 foram obtidos em bons excessos enantioméricos (*ee*). Foi possível observar que a reação em 48 horas acarretou no decréscimo do *ee* do acetato (*S*)-5 (entrada 4), embora o *ee* do álcool (*R*)-4 tenha permanecido inalterado; (*R*)-4 e (*S*)-5 puderam ser isolados em 48% e 50% de rendimento, respectivamente. Considerando que a CALB reage com os dois enantiômeros de 4, tempos maiores de reação permitem a ocorrência da acilação mais lenta do isômero (*R*)-4, explicando a diminuição do *ee* do acetato (*S*)-5 observada.

Conclusões

A resolução enzimática do álcool alílico (\pm)-4 com CALB e acetato de vinila como agente acilante durante 24 horas permitiu a obtenção de (R)-(-)-4 e (S)-(-)-5 com bom ee e rendimento. As reações que dão prosseguimento à síntese do fragmento C₁-C₆ da (-)-putaminoxina estão em andamento em nosso laboratório.

Agradecimentos

CNPq, CAPES e FAPESP.

¹ (a) Ferraz, H. M. C.; Bombonato, F. I.; Longo Jr, L. S. *Synthesis* **2007**, *2007*, 3261; (b) Ferraz, H. M. C.; Bombonato, F. I.; Sano, M. K.; Longo Jr, L. S. *Quim. Nova* **2008**, *31*, 885.

Evidente et al. Phytochemistry 1995, 40, 1637.

³ Chopracka, A. et al. Tetrahedron: Asymmetry 2007, 18, 101.

⁴ Kazlauskas, R. J. J. Org. Chem 1991, 56, 2656.