O papel dos hidrogênios benzílicos na capacidade antioxidante da N-Vanilil-Acetamida (NVA).

Cibele S. da Penha (IC)^{1*}, José R. Cândido Júnior (PG) ¹, Glaydson L. F. Mendonça (PG) ¹, Pedro de Lima Neto (PQ) ¹, Adriana N. Correia (PQ) ¹ e Valder N. Freire (PQ) ².

Email: cibele.souza10@gmail.com.

1 Departamento de Química Analítica e Físico-Química – Campus do Pici, Bloco 940 CEP 60455-960 Fortaleza-CE. 2 Departamento do Física – UFC -- Campus do Pici, Bloco 922, CEP 60455-960 Fortaleza -- CE Palavras Chave: NVA, antioxidante, ab initio.

Introdução

A capsaicina, substância pungente presente na pimenta vermelha é um importante antioxidante exógeno. A N-Vanilil-Acetamida (NVA) foi usada como molécula base do estudo da atividade antioxidante da capsaicina devido sua maior simplicidade. Kogure e colaboradores mostraram a importância dos átomos de hidrogênio do carbono benzílico (H_{BZ}) sobre a atividade antioxidante, que é superior à do hidrogênio fenólico (H_{FL}). Neste trabalho mostramos por cálculos ab initio que existe diferença entre os H_{BZ} : o radical R_{BZ1} (Figura 1B) apresenta torsão H_{BZ1}-C_{BZ}-N-H de 180º, enquanto que o radical R_{BZ2} (Figura 1C), uma torsão H_{BZ2}-C_{BZ}-N-H de 23,7°. Estas duas situações promovem a formação de dois radicais distintos, energética e conformacionalmente.

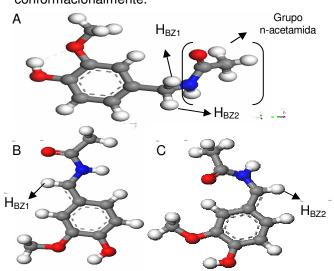
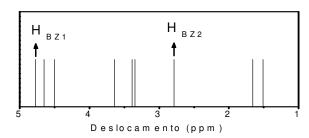


Figura 1. Molécula do NVA (A) e os radicais benzílicos $R_{BZ1}(B)$ e $R_{BZ2}(C)$

Resultados e Discussão


Obtivemos que os H_{BZ} apresentam valores diferentes de cargas de Mulliken (Tabela 1), obtidas usando o método DFT-B3LYP/6-311G+(d) do programa Gaussian 03W, sugerindo a não similaridade dos átomos de hidrogênio. A maior carga do H_{BZ2} o torna um melhor alvo para ataque de radicais. Os comprimentos de ligação mostram valor superior para a ligação do carbono benzílico (C_{BZ}) com H_{BZ2} , o que implica em menor força de 33^{3} Reunião Anual da Sociedade Brasileira de Química

ligação. Essa diferença da força de ligação favorece a abstração de H_{BZ2} .

Tabela 1. Cargas de Mulliken e comprimentos de ligação.

Hidrogênio	H _{BZ1}	H _{BZ2}
Carga (u.e.)	0,242	0,266
Comprimento H _{BZ} -C _{BZ} (Å)	1,09065	1,09292

O espectro calculado RMN- H^1 mostra diferença nos picos dos H_{BZ} . O H_{BZ1} apresenta maior deslocamento químico, em torno de 4,7ppm, devido aos efeitos de anisotropia do anel aromático e da carbonila, enquanto que H_{BZ2} apresenta deslocamento em torno de 2,8ppm.

Figura 2. Espectro de RMN-H¹
A variação da energia livre de Gibbs para os radicais benzílicos mostra a maior estabilidade do radical formado pela abstração de H_{BZ2}.

Conclusões

O grupo lateral n-acetamida ao carbono benzílico provoca quebra da similaridade dos H_{BZ} na N-Vanilil-Acetamida. Esta diferença energética provoca diferenças nas capacidades antioxidantes destes átomos, propiciando melhor atividade antioxidante para H_{BZ2} . Nossos resultados mostram a limitação de se considerar os hidrogênios benzílicos como equivalentes para a caracterização da capacidade antioxidante da N-vanilil-acetamida.

Agradecimentos

CNPq, FUNCAP, CAPES, FINEP e Sylvio Canuto.

Kogure, K., Goto, S., Nishimura, M., Yasumoto, M., Abe K., Ohiwa, C., Sassa, H., Kusumi, T., Terada, H. *Biochimica et Biophysica Acta* 2002, 1573, 84-92