CO, HO e O₃: Estimativa de Suas Quantidades via Mecanismo de Decomposição de NMHC`s Oriundos de Emissões Automotivas

Edilton de Souza Barcellos^{1*} (PQ), Márcia Miguel Castro Ferreira² (PQ).

Palavras Chave: poluição atmosférica, alifáticos, aldeídos, monóxido de carbono, radicais hidroxila, ozônio.

Introdução

Na região Metropolitana de São Paulo (RMSP), a principal fonte de emissão é automotiva. O ozônio no nível solo, nessa região, ocorre por produção fotoquímica direta na própria troposfera, estando presentes uma fonte de carbono (hidrocarbonetos), óxidos de nitrogênio (NO, NO₂) e luz solar^{1,2,3}. Com base nos poluentes de partida (apenas NMHC's) alifáticos (olefinas), com até 8 átomos de carbono, em fase gasosa (estudos em câmaras de "smog")⁴, e de mecanismos⁵ para a degradação desses compostos no nível solo, estimou-se quantidades de CO, HO' e O₃. O estudo considera cenário de alta concentração de NO_x, no qual produz-se o formaldeído mais um aldeído genérico (n átomos de carbono) e ozônio.

Resultados e Discussão

Abaixo, mecanismo para a degradação de um alceno de fórmula $C_n H_{2n}$ por radicais hidroxila com a produção de um aldeído genérico, formaldeído e dois O_3 .

Alcenos (alta conc. No_x) $C_nH_{2n} + HO \rightarrow H_{2n}(OH)C_n$ $H_{2n}(OH)C_n + O_2 + M \rightarrow H_{2n}(OH)C_nO_2 + M$ $H_{2n}(OH)C_nO_2 + NO \rightarrow H_{2n}(OH)C_nO + NO_2$ $H_{2n}(OH)C_nO \rightarrow H_{2n-2}(OH)C_{n-1} + H_2CO$ $H_{2n-2}(OH)C_{n-1} + O_2 \rightarrow H_{2n-2}C_{n-1}O + HO_2$ $HO_2 + NO \rightarrow NO_2 + HO$ $2 NO_2 + 2 hv \rightarrow 2 NO + 2 O$ $2 O + 2O_2 + 2M \rightarrow 2 O_3 + 2 M$ $C_nH_{2n} + 4 O_2 \rightarrow H_{2n-2}C_{n-1}O + H_2CO + 2 O_3$ (q1)

Os dois aldeídos formados, em presença de luz solar, produzem (via ciclo de eliminação formi $^{\hat{p}}$) CO, HO e O₃.

O formaldeído na equação q1 é o composto inicial de uma sequência de reações cuja equação total pode ser representada pela sua reação com quatro moléculas de oxigênio para formar monóxido de carbono, radiais hidroxila e ozônio:

$$H_2CO + 4 O_2 \rightarrow CO + 2 HO' + 2 O_3$$
 (q2)

Por outro lado, o aldeído genérico de fórmula geral $H_{2n-2}C_{n-1}O$, produz um aldeído contendo um

átomo de carbono a menos ($H_{2n-4}C_{n-2}O$), um CO, 2 HO e 3 O₃.

Para o bloco de reações considerado, se **n** (número de átomos de carbono no alceno inicial) for igual a dois, o hidrocarboneto de partida é o etileno. Este produz duas moléculas de formaldeído. Cada uma destas produz um CO, dois radicais 2 HO e duas moléculas de ozônio.

Assim, cada molécula de etileno inicial produzirá o dobro das quantidades expressas na equação q2, isto é, 2 CO, 4 HO e 4 O₃.

Estendendo-se o cálculo para os casos nos quais o hidrocarboneto possui até oito átomos de carbono, obtém-se como resultado a equação geral q1.

O aldeído formado $(H_{2n-2}C_{n-1}O)$ é o composto inicial da sequência de reações que pode ser representada pela equação total:

$$\begin{split} H_{2n\text{--}2}C_{n\text{--}1}O \,+\, O_2 &\to H_{2n\text{--}4}C_{n\text{--}2}O \,+\, CO \,+\, 2\; HO\text{`} \,+\, 3\; O_3 \\ &\quad (q3) \end{split}$$

Conclusões

Os resultados obtidos segundo os mecanismos propostos permitem estimar as quantidades de monóxido de carbono, de radicais hidroxila e de ozônio que se formam na atmosfera poluída com NMHC's da classe dos alcenos. Assim, para n igual a dois são produzidos 1 n CO, 2 n HO e 2 n O₃. Por outro lado, quando n é maior do que dois, são gerados 3 n CO, 2 n HO e 3 n O₃

Agradecimentos

A Jesuino Romano e Massayuki Kuromoto, da CETESB, pelo acesso ao Banco de Dados.

¹ Departamento de Química/UFV, ² Instituto de Química/Unicamp - *barcello@ufv.br.

¹Baird, C. Environment Chemistry. W. H. Freeman and Company, New York, 1995..

²Jacob, D. J. Atmospheric Environment . **2000**, 34, 2131.

³Jenkin, M. E.; Hayman, G. D. Atmospheric Environment, **1999**, 22, 487. ⁴Manahan, E. S. Environment Chemistry. 6th ed. Lewis Publishers, CRC Press, Inc. **1994**.

⁵Barcellos, E. S.. Tese de Doutorado, **2003**, Instituto de Química, Unicamp, Campinas, SP