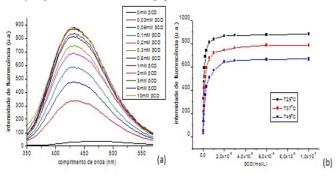
Interações entre o fármaco Dapsona e β-Ciclodextrina, investigadas por espectroscopia de fluorescência.

Milene H. Martins (PQ)*, Adriana Calderini (PG), Francisco B.T. Pessine (PQ)

Instituto de Química, Universidade Estadual de Campinas, Campinas - SP, CEP 13083-970 *milene@igm.unicamp.br

Palavras chave: Dapsona, β-ciclodextrina, complexos de inclusão.


Introdução

Dapsona (DAP) é um agente antibacteriano e antilepromatoso, que age impedindo o crescimento e desenvolvimento bacteriano, sendo indicado para tratar hanseníase, dermatite herpetiforme, malária, etc. Os principais efeitos adversos são anemia, dermatite alérgica, dor abdominal, cefaléia, febre, hepatite, mal estar severo, anorexia, náusea; psicose, vômito, etc.[1]. Portanto, a inclusão deste fármaco em β -ciclodextrina (β -CD) constitui excelente alternativa para diminuir seus efeitos adversos e a dose terapêutica administrada.

Neste trabalho utilizamos a relação entre a mudança de intensidade da fluorescência da DAP com a variação da [β CD] para estudar parâmetros termodinâmicos importantes, relacionados à estabilidade dos complexos: constante de ligação (K), estequiometria, Energia Livre de Gibbs (Δ G), Entalpia (Δ H) e Entropia (Δ S).

Resultados e Discussão

O espectro de fluorescência da DAP foi monitorado, em 248nm, em função da concentração de βCD . Em tubos de ensaio contendo 10 ml de solução aquosa final foram adicionadas soluções de DAP (5µmol/L) e quantidades crescentes de βCD (0; 0,03; 0,06; 0,1; 0,3; 0,6; 1; 3; 6; 10mmol/L). As soluções foram agitadas por 1h, termostatizadas a 25, 37 e 49°C. A relação entre a mudança de intensidade da fluorescência da DAP e a concentração da βCD pode fornecer a constante de ligação através da equação de Scatchard. [2]

Figura 1. (a) Espectros de fluorescência da DAP a 25°C; (b) Intensidades de fluorescência da DAP na ausência e presença de concentrações crescentes de β CD a 25, 37 e 49°C.Condições: λ_{exc} = 295nm; faixa de varredura 315 a 570nm; fendas de excitação e emissão: 5 e 20nm; velocidade=1200nm/min.

O gráfico de Scatchard, linear, sugeriu estequiometria 1:1. Rearranjando na forma de Benesi-Hildebrand, novamente mostrou gráfico linear, confirmando essa estequiometria.

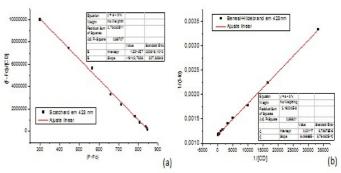


Figura 2. Gráficos (a) de Scatchard; (b) de Benesi-Hildebrand.

Os parâmetros termodinâmicos (Tabela 1) foram obtidos via equações de van't Hoff e $\Delta G = \Delta H - T \Delta S$.

Tabela 1. Parâmetros termodinâmicos do complexo βCD-DAP.

T (°C)	25	37	49
K(Benesi-Hildebrand) (L/mol)	18093	10897	4692
K (Scatchard) (L/mol)	18144	10632	4715
ΔG (kJ/mol)*	-24,4	-23,6	-22,8
ΔH (kJ/mol)*	-44,7		
ΔS (J/mol/K)*	-67,9		

^{*} considerando K obtido por Benesi-Hildebrand.

Conclusões

A formação do complexo de inclusão foi confirmada pelo aumento da intensidade de fluorescência da DAP com aumento de [βCD]. A forte interação entre essas moléculas é indicada pelos valores dos parâmetros termodinâmicos calculados.

Agradecimentos

À Capes, pelo suporte financeiro.

¹Orzech, C.E.; Nash, N.G. Dalay R.D.D. Dapsone. In: Analytical Profiles of Drug Substances, ed. K. Florey, Academic Press, **1976**, *5*, 87.

²Lucas-Abellán, C.; Fortea, M.I. et al., Food Chem. **2008**, 111, 262.