Síntese de pirazóis a partir da utilização de enonas cíclicas derivadas do cloreto de etil oxalila

Nilo Zanatta^{*} (PQ), Liana da S. Fernandes (PG), Leida de M. Pretto (IC), Marcos A. P. Martins (PQ), Helio G. Bonacorso (PQ) e Alex F. C. Flores (PQ).

Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria – Av. Roraima, 1000, Bairro Camobi, CEP: 97.105-900, Santa Maria, RS, Brasil.

*Autor: Tel. (55) 3220 8756; e-mail: zanatta@base.ufsm.br

Palavras Chave: enonas cíclicas, pirazóis, derivatizações

Introdução

Heterociclos nitrogenados compõem um amplo número de produtos naturais. Os pirazóis são compostos que despertam atenção, apresentam muitos derivados com ampla variedade propriedades interessantes, como hiperglicêmica, analgésica, anti-inflamatória, antipirética, anti-bacterial, hipoglicêmica, entre outras. Muitos compostos que apresentam fenilpirazóis em suas estruturas, por exemplo, são conhecidos por ter significante atividade farmacológica, assim como o Celecoxib e anti-inflamatória que atua como um inibidor seletivo da enzima prostaglandina endoperoxidase sintetase-2 (PGHS-2).

Devido à importância desta classe de compostos, há mais de duas décadas, o NUQUIMHE tem desenvolvido rotas sintéticas para obter estrategicamente heterociclos substituídos que possibilitem derivatizações, conduzindo a substâncias com possível atividade biológica.¹⁻⁵

Resultados e Discussão

Neste trabalho foram desenvolvidas metodologias sintéticas simples e eficientes para promover a obtenção de pirazóis através da reação de ciclocondensação entre as enonas cíclicas 2-etil-(4,5-diiddrofuran-3-il)-2-oxoacetato (4) e 2-etil-(3,4-diidro-2*H*-piran-5-il)-2-oxoacetato (5) com diferentes hidrazinas.

Primeiramente, foram preparadas as enonas cíclicas precursoras **4,5** através da acilação do 2,3-diidrofurano (**1**) e 3,4-diidro-2*H*-pirano (**2**) utilizando cloreto de etil oxalila como agente acilante, segundo metodologia desenvolvida por nosso grupo de pesquisa. Posteriormente, estes compostos foram reagidos com diferentes hidrazinas, conforme mostra o **Esquema 1**, conduzindo aos pirazóis desejados em bons rendimentos 63-96%.

Os pirazóis **7,8a**, que apresentam hidrogênio como substituinte foram submetidos à reação de *N*-alquilação, utilizando-se bromo etano, brometo de alila e 2-cloroacetamida como agentes alquilantes, sob agitação e refluxo durante 24 horas, utilizando 33ª Reunião Anual da Sociedade Brasileira de Química

acetona anidra como solvente e carbonato de potássio como base, rendendo os pirazóis derivados em rendimentos satisfatórios, 48-86%.

Esquema 1:

nº / Composto	nº / Composto	nº / R¹	nº / R¹	nº/n
	4 OEt	6,7,8a H	6, 7,8e <i>t</i> -Bu	7 n = 1
1 6	* 🗇 !	6,7,8b (CH ₂) ₂ OH	l i	
	O OEt	6,7,8c Ph	6,7,8f	8 n = 2
2	5 0	6,7,8d F F	0=S=0 NH ₂	

Conclusões

As metodologias desenvolvidas para a síntese dos pirazóis e seus derivados *N*-alquilados apresentadas neste trabalho, mostraram-se fáceis, simples e eficientes. Possibilitando-nos obter os produtos desejados através de apenas dois passos reacionais.

Os compostos sintetizados foram obtidos na forma de misturas isoméricas e identificados através de técnicas de ressonância magnética nuclear de ¹H e ¹³C e espectroscopia de massas.

Agradecimentos

Nossos agradecimentos às instituições de fomento que incentivam nossas pesquisas: CNPq, FAPERGS, FATEC e CAPES.

¹ Attanasi, O. A.; Favi, G.; Filippone,P.; Giorgi, G.; Mantellini, F.; Moscatelli, G.; Spinelli, *Organic Letters.*, **2008**, *10*, 1983.

² Bonacorso, H. G.; Porte, L. M. F.; Cechinel, C. A.; Paim, G. R.; Deon, E. D.; Zanatta, N.; Martins, M. A. P. *Tethahedron Letters*, **2009**, 50, 1302