Síntese de Derivado de Biodiesel de Soja via Reação de Hidroformilação em Sistema Bifásico

Hugo F. Ramalho* (PG), Karlla M. C. di Ferreira (IC), Paula M. A. Machado (IC), Marcos J. Prauchner (PQ), Paulo A. Z. Suarez (PQ). *hframalho@unb.br

Laboratório de Materiais e Combustíveis, IQ, Universidade de Brasília, CP 4478, 70904-970 Brasília – DF, Brasil

Palavras Chave: Biodiesel, Hidroformilação, Líquidos Iônicos, Catálise Bifásica

Introdução

Com o aumento de produção do biodiesel no Brasil, é importante que sejam realizados estudos sobre os derivados deste biocombustível. Estes novos produtos podem ser utilizados para diversos fins, como aditivos, lubrificantes ou polímeros. Uma forma de modificação de biodiesel é a funcionalização de suas insaturações que são abundantes no óleo de soja1. A hidroformilação de olefinas² é uma alternativa para a produção destes derivados. Devido ao alto custo, é importante o reaproveitamento dos catalisadores para esta reação. Para tanto, foram empregados os líquidos iônicos (LIs) derivados do cátion dialquil-imidazólio como solventes. Este trabalho descreve a reação de hidroformilação com um complexo de ródio em meio bifásico para modificação de biodiesel utilizando diferentes LIs, analisando os resultados com os LIs BMI-PF₆, BMI-BF₄ e BMI-NTf₂, além de estudar o efeito da adição do ligante PPh₃ no meio reacional.

Resultados e Discussão

O biodiesel é obtido pela transesterificação de óleo de soja com MeOH e KOH. Os LI são produzidos de acordo com a literatura.3 As reações de hidroformilação foram feitas em um reator de aço, com quantidades desejadas de LI, HRhCO(PPh₃)₃, PPh₃ e biodiesel, reagindo sob aquecimento e agitação na presença de CO/H₂ (2:1). Os produtos foram caracterizados por ¹H-RMN e IV. A análise dos resultados mostra que a adição do PPh3 (Tabela 1) promove o aumento da conversão das insaturações, além de diminuir a hidrogenação pela estabilização do complexo de Rh, que favorece a hidroformilação. Com diferentes Lis (Tabelas 2 e 3), a alta solubilidade do aldeído nos LI's BMI-BF4 e BMI-NTf₂ fez com que estes produtos sofressem redução, o que explica a baixa seletividade. Este comportamento foi pouco observado no BMI-PF₆, em que os produtos da hidroformilação são menos solúveis.

Tabela 1: Composição com e sem PPh₃

Т	Conv (%)	Con (%)*	Sel (%)	Sel (%)*
1	34	43	100	100
2	57	67	100	100
4	84	91	100	95
6	87	91	100	100
8	93	100	100	100
24	98	100	100	99
36	100	100	20	78
48	100	100	17	75

*PPh3/Rh = 10

Tabela 2: Conversão para os diferentes os LI

T(h)	BMI-PF ₆	BMI-BF ₄	BMI-NTf ₂
1	34	41	40
2	57	55	53
4	84	**	82
6	87	85	90
8	93	91	95
24	98	100	95
36	100	100	100
48	100	100	100

Tabela 3: Seletividade para formação de aldeído

T(h)	BMI-PF ₆	BMI-BF ₄	BMI-NTf ₂
1	100	62.4	85
2	100	78	93
4	100	**	97
6	100	98	95
8	100	90	86
24	100	79	83
36	20	87	67
48	17	63	44

Conclusões

O trabalho apresentou um sistema catalítico bifásico eficiente para a síntese de derivados de biodiesel de soia, que podem apresentar diversas finalidades.

Agradecimentos

CAPES, CNPq.

¹ Suarez, P.A.Z. et al, *Quim. Nova*, **2007**,30(3), 667.

² Mendes, A.N.F. et al, *J. Braz. Chem. Soc.* **2005**,16(6A), 1124.

³ Cassol, C. C. et al, Adv. Synth. Catal. **2006**, *348*, 243.