Influência da Presença de Diferentes Ligantes Alquila, em Complexos de Estanho (IV), na Reatividade em Reações de Transesterificação

Jhosianna P. Vilela da Silva¹ (IC), Mônica Araújo da Silva¹ (IC), Marcos A. Gelesky¹ (PQ), Mario Roberto Meneghetti^{1,2} (PQ), Simoni M. Plentz Meneghetti^{1,2*} (PQ)

¹Instituto de Química e Biotecnologia / PPGQB – Universidade Federal de Alagoas, Av. Lourival de Melo Mota, s/ nº – CEP 57072-970 – Maceió - AL – Brasil, Telefone: (82) 3214-1703; Fax: 3214-1615 E-mail: *simoni.plentz@gmail.com

Palavras Chave: biodiesel, transesterificação, catalisador, estanho(IV).

Introdução

Compostos a base de estanho (IV) são amplamente empregados como precursores catalíticos em reações de poliesterificação, transesterificação e policondensação, para obtenção de polímeros e intermediários ^{1,2}. Resultados recentes mostraram o potencial desses sistemas na obtenção de biodiesel^{3,4}.

Neste trabalho, a obtenção de biodiesel foi conduzida através da metanólise do óleo de soja em presença de catalisadores a base de estanho (IV), contendo diferentes ligantes alquila coordenados ao estanho, em 6 horas de reação.

O objetivo principal foi avaliar a influência da presença desses diferentes ligantes sobre a atividade catalítica. Os catalisadores empregados foram: dimetildineodecanoato de estanho (IV), dibutildineodecanoato de estanho (IV) e dioctildineodecanoato de estanho (IV)], conforme Figura 1.

R= Me, n-Bu, n-Oct

Figura 1. Estrutura dos catalisadores empregados nesse estudo.

Resultados e Discussão

As reações de transesterificação foram conduzidas em 6 horas de reação, em reator de vidro em condições de refluxo.

Na Tabela 1 são apresentados os resultados de conversão do óleo de soja (TG), em biodiesel (FAMEs), monoglicerídeos (MG) e diglicerídeos (DG) na proporção molar MeOH/óleo/cat. = 400/100/1. Os produtos reacionais foram analisados por HPLC.

Tabela 1. Resultados de conversão do óleo de soja (TG), em biodiesel (FAMEs), monoglicerídeos (MG) e diglicerídeos (DG) na proporção molar MeOH/óleo/cat. = 400/100/1, a 6 horas de reação.

	FAMEs	MG	DG	TG
Di metil dineodecanoato de estanho (IV)	18,0	0,6	22,4	59,1
Di butil dineodecanoato de estanho (IV)	15,5	0,6	21,8	62,1
Di octil dineodecanoato de estanho (IV)	15,4	0,2	25,6	58,8

Nessas condições reacionais, todos os complexos exibiram atividade catalítica. Os resultados apontam para uma tendência de aumento do rendimento reacional de ésteres metílicos de ácidos graxos (% de FAMEs) na presença do ligante metila em comparação aos outros dois (butila e octila). Isso parece indicar uma influência dos efeitos estéreos ou eletrônicos dos diferentes grupos alquila presentes na estrutura do catalisador. Pode-se sugerir nesse caso, devido à complexidade dos substratos (TG, DG e MG), que o efeito estéreo possa ser o mais pronunciado.

Conclusões

Estes resultados demonstram que sistemas a base de estanho(IV) são muito promissores em reações de transesterificação. A influência dos efeitos estéreos ou eletrônicos dos diferentes grupos alquila presentes na estrutura do catalisador foi colocada em evidência e pode-se sugerir que o efeito estéreo possa ser o mais pronunciado.

Agradecimentos

CNPq, CAPES, FINEP, FAPEAL.

¹ J. M. R. Fazenda; Tintas e Vernizes -Ciência e Tecnologia, 20 ed., Abrafati, São Paulo, **1995**.

² J. P. L. Dwan'Isa; A. K. Mohanty; M. Misra; L. T. Drzal; *J. Mat. Science*, **2004**, 39, 2081.

³ D. A. C. Ferreira; C.R. Wolf; M. R. Meneghetti; S. M. P. Meneghetti; *Applied Catalysis*, **2007**, 317, 58-61.

⁴ D. R. de Mendonça; J. P. V. da Silva; R. M. de Almeida; C. R. Wolf; M. R. Meneghetti; S. M. P. Meneghetti; *Applied Catalysis*, **2009**, 365, 105-109