Construção de modelos de calibração para quantificação de possíveis adulterações de oliva extra virgem por óleos de canola e girassol

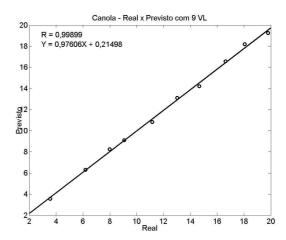
Rodrigo Santos de Oliveira¹ (IC)^{*}, Rosilene S. Nascimento² (PG), Simone S. O. Borges¹ (PG), José Bento Borba da Silva (PQ)², Waldomiro Borges Neto¹ (PQ), *rodrigogrand@gmail.com

Palavras Chave: óleo de oliva, canola, girassol, quimiometria.

Introdução

O azeite de oliva está entre os óleos vegetais comestíveis mais importantes e antigos do mundo¹. 2008 pesquisas realizadas na fazenda experimental da Empresa de Pesquisa Agropecuária de Minas Gerais (Epamig) no sul de Minas Gerais, revelaram clima favorável a variedade de oliveiras capazes de produzir azeite puro e de qualidade comercial, comparada aos melhores do mundo. Devido a esses resultados, a previsão é que no máximo em 2010, o azeite de oliva brasileiro seja lançado no mercado. A adição de óleos de menor valor comercial a este óleo representa uma das adulterações mais freqüentes. Neste trabalho propomos uma metodologia para determinar a adulteração em óleo de oliva extra virgem com óleos de canola e girassol, utilizando PLS (método dos quadrados mínimos parciais) e espectrometria no infravermelho médio.

Resultados e Discussão


Os espectros foram obtidos utilizando um espectrômetro de infravermelho da marca Shimadzu modelo IRPrestige-21, com transformada de Fourier e dispositivo amostrador por reflectância atenuada (ATR) com cristal de ZnSe. Foi utilizada uma resolução de 4 cm⁻¹ e 32 varreduras.

Os modelos de calibração obtidos foram avaliados pelos parâmetros apresentados na Tabela1.

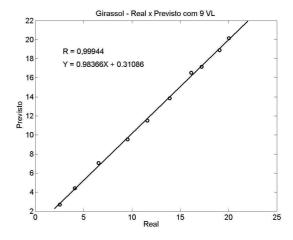

	Soja			Canola		
	Real	Previsto	Erros (%)	Real	Previsto	Erros (%)
	3,7320	3,6291	2,7586	9,0820	9,1059	0,2634
	12,5450	12,3355	1,6699	7,9820	8,2391	3,2215
	16,9800	16,8571	0,7236	3,5640	3,5488	0,4264
	5,5380	5,5487	0,1935	11,1590	10,8387	2,8701
	6,7430	6,5346	3,0910	14,6600	14,2255	2,9638
	8,6730	8,4582	2,4770	16,6230	16,5734	0,2985
	10,5970	10,5437	0,5026	6,1820	6,3104	2,0766
	14,4590	14,5260	0,4635	13,0210	13,1165	0,7335
	19,1170	18,8260	1,5224	18,0560	18,1844	0,7111
	19,5900	19,2502	1,7347	19,8000	19,2605	2,7247
	Erro médio (%) 1,5137		Erro médio (%)		1,6290	
RMSEP	0,1915			0,2455		
RMSEC	0,1573			0,2148		
VLs	7			9		

Tabela 1. Parâmetros dos modelos de calibração.

Nas Figuras 2 e 3 temos os gráficos dos valores das concentrações reais versus os previstos indicando que ambos os modelos foram lineares.

Figura 2. Concentração Real vs. Prevista do modelo PLS do oliva adulterado com canola.

Figura 3. Concentração Real vs. Prevista do modelo PLS do oliva adulterado com girassol.

Conclusões

A metodologia utilizando Espectrometia no Infravermelho Médio e PLS, possibilitou quantificar os adulterantes de menor valor comercial (canola e girassol) em oliva extra virgem.

Agradecimentos

Ao CNPq e à FAPEMIG pelo apoio financeiro.

¹ Laboratório de Quimiometria do Triângulo, Instituto de Química, Universidade Federal de Uberlândia, MG

²Departamento de Química, Universidade Federal de Minas Gerais, MG

¹ Tay, A.; Singh, R. K.; Krishnan, S. S. e Gore, J. P. *Lebensm.-Wiss. u.-Technol.* **2002**, 35, 99.