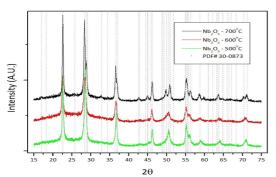
Síntese de Citrato e Óxido de Nióbio pelo Método dos Precursores Poliméricos

Juliana A. C. de Oliveira (IC)*, Poty R. de Lucena (PQ)

*ju calmon@hotmail.com

1- Instituto de Ciências Ambientais de Desenvolvimento Sustentável - Universidade Federal da Bahia. R. Prof. José Seabra sn - Centro, Barreiras-BA – CEP: 47805-100.


Palavras Chave: Óxido de nióbio, Citrato de nióbio, Método do precursor polimérico.

Introdução

O óxido de nióbio (Nb₂O₅) apresenta propriedades bastante interessantes as quais permitem ampla aplicação deste material na indústria e no meio acadêmico¹. Pesquisas recentes destacam que materiais em dimensões nanométricas são obtidos por métodos químicos². O Método dos precursores poliméricos (M. Pechini) utiliza de um ácido hidroxicarboxílico (ácido cítrico, por exemplo) na formação de quelatos com cátions dissolvidos na solução com um álcool polihidroxílico². Em adição, o tempo de exposição em determinada temperatura pode interferir na área superficial do material, autores³ afirmam a diminuição desta com o aumento do tempo de exposição do óxido de nióbio. O objetivo deste trabalho é a obtenção deste óxido pelo método proposto analisando sua potencialidade como sensores e suportes de catalisadores.

Resultados e Discussão

O Citrato de Nióbio foi sintetizado a partir do Oxalato amoniacal de Nióbio (NH₄NbO(C₂O₄)₂ - Companhia Brasileira de Metalúrgica e Mineração, CBMM e Ácido Cítrico monohidratado, (J.T.Baker). Posteriormente, a solução precursora do óxido foi obtida por poliesterificação a 90 °C com adição de Etileno Glicol, HOCH₂CH₂OH, (J.T. Baker – Baker analyzed). Tratamentos térmicos (500 °C, 600 °C, 700 °C) foram realizados e caracterizações de Infravermelho (IR), área superficial (BET), difração de raios x (DRX) e microscopia eletrônica de varredura (MEV) analisaram as propriedades estruturais e morfológicas do óxido obtido.

Figura 2. Difratograma de raios x.

33ª Reunião Anual da Sociedade Brasileira de Química

Tabela 1. Área Superficial (BET) do Óxido de Nióbio

Amostra	Area Superficial
Nb ₂ O ₅ 500 °C/4h	40,61 m²/g
Nb ₂ O ₅ 600 °C/2h	33,98 m²/g

Os resultados de DRX obtidos comprovam formação do óxido, o qual obedece ao padrão JCPDS 27-1003 da estrutura ortorrômbica do Nb_2O_5 . Os espectros de Infravermelho revelam o modos vibracionais em $800~\text{cm}^{-1}$ (v Nb=O) , 715 cm $^{-1}$ (Nb-O-Nb) e 630 cm $^{-1}$ (v Nb-O), que estão associados a interação metal-oxigênio, em poliedros de coordenação octaédrica encontrados na estrutura cristalina do Nb_2O_5 . Os dados de BET demonstram uma redução de área superficial dos pós em função do aumento de temperatura de tratamento térmico.

Conclusões

Concluímos que a metodologia proposta logrou êxito na formação de fase homogênea do $\mathrm{Nb_2O_5}$ a baixa temperatura a partir do oxalato amoniacal de nióbio e que o aumento de temperatura de tratamento térmico produz uma diminuição da área superficial dos pós, relativa ao processo de crescimento de partículas.

Agradecimentos

A CBMM (Companhia Brasileira de Metalurgia e Mineração) - pelo fornecimento do Oxalato de Nióbio amoniacal; Ao laboratório de Materiais e Catálise da Universidade Federal de Pelotas - pelas análises de DRX e área Superficial e ao CNPq pelo financiamento.

¹Braga, V. S. *Tese de doutorado*, Universidade de Brasília-UNB, **2007**,

²Maciel, A. P.; Longo, E. e leite, E. R. *Quim. Nova*, **2003**, 26(6), 855-862.

³Tagliaferro, G.V.; Silva, M.L.C.P; Silva, G.L.J.P. *Quim Nova*, **2005**, 28(2), 250-254