Nanopartículas de prata em filmes automontados de V₂O₅ e polialilamina.

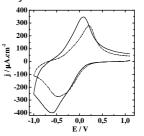
Nelson A. Galiote^{1*} (PG), Maiuí Camargo¹ (IC) e Fritz Huguenin¹ (PQ)

nags13@gmail.com

Palavras Chave: Eletrocromismo, Filmes Automontados, Nanocompósitos e Inserção iônica.

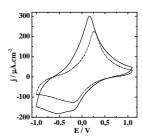
Introdução

Entre os óxidos metálicos estudados como matrizes hospedeiras de intercalação para baterias de lítio e dispositivos eletrocrômicos, o V_2O_5 tem sido amplamente estudado devido às suas propriedades de intercalação/desintercalação de íons lítio em sua estrutura lamelar. 1


Os nanocompósitos de V_2O_5 e polialilamina (PAH) podem ser obtidos pelo método camada por camada (LbL), a qual permite um alto controle de espessura e nanoarquitetura. Este processo é fundamentado na adsorção física de colóides e polímeros com cargas opostas.

A condutividade eletrônica pode melhorar o desempenho eletroquímico destes materiais, a partir da adição de nanopartículas metálicas na estrutura automontada.²

Neste trabalho, foram montados filmes LbL de V_2O_5/PAH e $V_2O_5/PAH/Ag$ com 15 bicamadas, e investigados a partir de voltametria cíclica, cronopotenciometria, cronoamperometria e espectroscopia eletrônica na região do visível do espectro eletromagnético.


Resultados e Discussão

A Figura 1 mostra o perfil potenciodinâmico dos filmes LbL (...) V₂O₅/PAH e (-)V₂O₅/PAH/Ag, ambos de 15 bicamadas, com uma velocidade de varredura de 50 mV.s⁻¹. Nota-se na Figura 1 que a densidade de corrente catódica é maior para o filme V₂O₅/PAH/Ag, indicando um maior fluxo de íons lítio no seu interior. Além disto, o pico de oxidação ocorre em potenciais mais negativos durante o processo de desintercalação, quando comparado com o filme V₂O₅/PAH, indicando uma possível das nanopartículas influência de prata condutividade e/ou no número de sítios eletroativos disponíveis no interior da matriz hospedeira. A carga inserida nos filmes V₂O₅/PAH e V₂O₅/PAH/Ag foi 4,46 e 6,49 mC.cm⁻², respectivamente, e a carga anódica foi 3,64 e 5,02 mC.cm⁻², respectivamente.

Figura 1. Perfil potenciodinâmico do primeiro ciclo para (...) V₂O₅/PAH e (-) V₂O₅/PAH/Ag. v = 50 mV.s⁻¹.

A Figura 2 mostra os perfis potenciodinâmicos dos filmes LbL (...) V_2O_5/PAH e (—) $V_2O_5/PAH/Ag$ no quinquagésimo ciclo. A carga de redução foi 2,71 e 4,13 mC.cm⁻², respectivamente, e a carga de oxidação foi 2,70 e 4,10 mC.cm⁻², respectivamente. Estes resultados mostram uma maior reversibilidade química e estabilidade eletroquímica do filme $V_2O_5/PAH/Ag$, atribuída à presença das nanopartículas de prata.

Figura 2. Perfil potenciodinâmico dos quinquagésimos ciclos para (...) V₂O₅/PAH e (-) V₂O₅/PAH/Ag. v = 50 mV.s⁻¹.

Conclusões

O filme com as nanopartículas de prata apresentou um melhor desempenho eletroquímico, devido a uma maior ciclabilidade.

Agradecimentos

Á CAPES e CNPg pelo auxílio financeiro.

¹Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto – Universidade de São Paulo, 14040-901 Ribeirão Preto (SP), Brasil.

¹ Kim, S.; Taya, M.; Xu, C. *J. Electrochem. Soc.* **2009**, 156, 2, E40. ² Rahman, M. M.; Wang, J. -Z.; Wexler, D.; Zhang, Y. -Y.; Li, X. -J.; Chou, S. -L.; Liu, H.-K. *J. Solid State Electrochem.* **2010**, 14, 571.