Avaliação de íons Cu(II), Fe(II), Fe(III), Ni(II) e Mn(II) na reação do sistema peróxi-oxalato visando a análise de óleos

Jozemir Miranda dos Santos* (PG) e Patrícia Dantoni (PQ)

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André, SP, CEP: 09210-170 jozemir.santos@ufabc.edu.br

Palavras Chave: quimiluminescência, peróxi-oxalato, íons metálicos, óleos.

Introdução

A reação quimiluminescente do sistema peróxioxalato (QL-PO), com peróxido de hidrogênio (H₂O₂), é utilizada há mais de quatro décadas na determinação de diversos analitos, em diferentes matrizes, devido ao seu alto rendimento quântico de luminescência e sensibilidade. O nosso grupo de pesquisa, recentemente estabelecido, pretende estudar a influência de alguns íons metálicos de transição na reação. As perspectivas são de desenvolver procedimentos analíticos determinação destas espécies em amostras de interesse ambiental e alimentício - com destaque para os óleos comestíveis - propondo uma alternativa à utilização de técnicas espectroscópicas nestas determinações. Estes estudos poderão, também, contribuir para a elucidação de diversos aspectos do mecanismo da reação QL-PO, ainda sob investigação. No presente relato destaca-se o estudo do comportamento dos íons Cu(II), Fe(II), Fe(III), Ni(II) e Mn(II), pois são importantes contaminantes de óleos comestíveis, afetando sua estabilidade oxidativa.

Resultados e Discussão

Os resultados apresentam uma das etapas do trabalho, na qual se utilizou o óleo mineral Nujol[®], em substituição aos comestíveis. A avaliação do comportamento dos íons metálicos na reação foi feita por meio de construção de curvas analíticas de H₂O₂, em função da intensidade máxima (Imax, em unidades relativas de luz/segundo, Rlu/s) e também da área (A, Rlu). As medições foram feitas em luminômetro Lumat 9507 (Berthold Tecnologies), sempre em 50s. As soluções-estoque empregadas foram preparadas diariamente e acondicionadas ao abrigo da luz; em acetonitrila (ACN): oxalato de bis-(2,4,6-triclorofenil) (TCPO); imidazol (IMI) e 9,10difenilantraceno (DFA); em água: H2O2 (estoque $1,0x10^{-2}$ mol L^{-1}); CuNO₃·3H₂O; FeSO₄·7H₂O (em HNO₃ 3 mol L^{-1}); MnCl₂; NiCl₂·3H₂O e FeCl₃. A acidez do meio foi controlada por solução tampão tris(hidroximetil)-amino metano (HTRIS+/TRIS), pH 8,5. O óleo mineral foi dissolvido em solução 1:9 (ACN:Acetato de Etila, v/v, 1,5 g L⁻¹). A ordem de adição dos reagentes e as concentrações finais (mol L⁻¹) foram: 50μ L de DFA $1,25x10^{-4}$; 50μ L de H_2O_2 (3x10⁻⁶; 7x10⁻⁶; 3x10⁻⁵; 7x10⁻⁵ e 1x10⁻⁴) ou

tampão, para o branco; 10μL de solução de óleo 3,75x10⁻² g L⁻¹; 20μL de IMI 5,0x10⁻⁵; 210 μL de tampão HTRIS⁺/TRIS, 10μL de solução do íon metálico 3,75x10⁻⁶ e 50μL de TCPO (volume final: 400μL). Para cada concentração de analito foram feitas cinco replicatas, inclusive para o branco. A **Tabela 1** apresenta os parâmetros das retas (para as medições de Imax) e o limite de detecção (L.D.).

Tabela 1. Resultados obtidos nos sistemas estudados:

Sistema	Equação da Reta ([H ₂ O ₂] em mol L ⁻¹)	L.D. (mol L ⁻¹)
QL-PO	Imax = $4295,1 + 4,01x10^{9}[H_2O_2]$ ($r^2 = 0,9944$)	1,49x10 ⁻⁶
QL-PO/Óleo	Imax = $12229.3 + 3.45 \times 10^9 [H_2 O_2]$ ($r^2 = 0.9722$)	6,62x10 ⁻⁶
QL-PO/ Óleo/Fe ²⁺	Imax = $77141,3 + 6,54x10^{9}[H_2O_2]$ ($r^2 = 0,9838$)	9,41x10 ⁻⁶
QL-PO/ Óleo/Cu ²⁺	Imax = $13039.0 + 5.79 \times 10^{9} [H_2O_2]$ ($r^2 = 0.9910$)	7,78x10 ⁻⁷
QL-PO/ Óleo/Fe ³⁺	Imax = $15065,4 + 4,65x10^{9}[H_2O_2]$ ($r^2 = 0,9923$)	1,24x10 ⁻⁵
QL-PO/ Óleo/Mn ²⁺	Imax = $17251.4 + 3.68 \times 10^9 [H_2 O_2]$ ($r^2 = 0.9948$)	6,18x10 ⁻⁶
QL-PO/ Óleo/Ni ²⁺	Imax = $6641.8 + 3.11x10^{9}[H_2O_2]$ ($r^2 = 0.9925$)	7,90x10 ⁻⁷

Verifica-se que os íons bivalentes cobre e ferro se destacam pelo menor L.D. e maior inclinação da curva de sensibilidade, respectivamente. Estes resultados podem apontar para alterações no mecanismo da reação, o qual é explicado, na ausência de íons metálicos, pelo sistema CIEEL (Chemically Initiated Electron Exchange Luminescence. Ao passo que a literatura² sugere que o mecanismo da reação QL-PO, na presença de Fe²⁺, se dá pela formação de íon superóxido, O₂. Existem indicações de outros caminhos da reação, também na presença de Cu2+, devido à Reação de Fenton.

Conclusões

Há possibilidade de aplicar o sistema na determinação dos íons apresentados, pois alteram a resposta da reação QL-PO à variação da concentração de H_2O_2 .

Agradecimentos

À Prof^a Nina Coichev, UFABC, CNPg e FAPESP.

33ª Reunião Anual da Sociedade Brasileira de Química

¹ Stepanyan, V. et al., *Talanta*, **2005**, *65*, 1056.

² Quaβ, U. e Klockow, D., *International Journal Environmental Analytical Chemistry*, **1995**, *60*, 375.