Procedimentos eletroanalíticos para determinação do herbicida diquat em amostras complexas

Luisa Célia Melo Pacheco (PG), Pedro de Lima-Neto (PQ), Djenaine De Souza (PQ), Adriana N. Correia (PQ)

Grupo de Eletroquímica de Corrosão - DQAFQ- UFC, Fortaleza-CE, Brasil e-mail: celialcm@yahoo.com.br

Palavras Chave: Diquat, eletrodo sólido de amálgama dentária, eletrodo de diamante dopado com boro.

Introdução

Os procedimentos eletroanalíticos têm sido utilizados com sucesso para a quantificação de resíduos de pesticidas em amostras de águas naturais e também em amostras de alimentos *in natura*. Estes procedimentos são convenientes principalmente na determinação de compostos que apresentem dificuldades no processo de análise química.

O herbicida *diquat* (brometo de 1,1`-etileno-2,2`- bipiridílio) é um exemplo, pois sua natureza catiônica exige que etapas prévias de extração e pré-concentração, bem como o uso de surfactantes como fase móvel, sejam empregados para o sucesso nos resultados.

Assim, este trabalho teve como objetivo procedimentos mostrar duas propostas de eletroanalíticos. com elevada sensibilidade. reprodutibilidade, eficiência е robustez para deste quantificação herbicida em amostras complexas.

Resultados e Discussão

Neste trabalho foram empregadas duas superfícies eletródicas: eletrodo sólido de amálgama de dentária (EAD) e eletrodo de diamante dopado com boro (EDDB), aliados à técnica de voltametria de onda quadrada (VOQ). Experimentos em meio de solução de Na₂B₄O₇ 0,05 mol L⁻¹ mostraram que o *diquat* apresenta dois picos de redução, em -0,6 V e em -0,95 V vs. Ag/AgCl/Cl⁻ (KCl saturado). O pico em -0,9 V apresentou maior sensibilidade analítica nas superfícies eletródicas utilizadas.

Sobre EAD a otimização dos parâmetros resultou em $f=100~{\rm s}^{\text{-1}},~a=50~{\rm mV}$ e $\Delta E_{\rm s}=2~{\rm mV}$. Sobre EDDB, $f=40~{\rm s}^{\text{-1}},~a=40~{\rm mV},~\Delta E_{\rm s}=2{\rm mV}$.

Curvas analíticas foram construídas, permitindo o cálculo dos limites de detecção (LD) e de quantificação (LQ). Os resultados obtidos com EAD e EDDB foram comparados com resultados obtidos pela utilização de cromatografia líquida de alta eficiência com detector na região do ultravioleta e do visível (HPLC/UV-Vis). Os parâmetros analíticos avaliados estão apresentados na Tabela 1.

Os valores de LD e LQ calculados indicam que o procedimento eletroanalítico utilizando-se EAD apresentou sensibilidade analítica similar àquela obtida com o emprego de HPLC. Entretanto, o uso de EDDB possibilitou a determinação eletroanalítica de *diquat* com sensibilidade cerca de duas ordens de grandeza maior, indicando que EDDB apresenta elevada potencialidade como sensor para *diquat*.

Tabela 1. Parâmetros analíticos para determinação de *diquat* utilizando procedimentos eletroanalíticos e cromatográfico^{1, 2}.

Parâmetros	EAD	EDDB	HPLC
r	0,9993	0,9944	0,9993
s	0,6307 A/mol L ⁻¹	6,4926 A/mol L ⁻¹	0,012 u.a./mol L ⁻¹
LD (μg L ⁻¹)	9,98	0,057	9,87
LQ (μg L ⁻¹)	33,28	0,192	32,91
Recuperação (%)	99,78±1,9	88,30±2,7	94,24±4,1
Repetibilidade (%)	1,93 (n=10)	0,77 (n = 10)	-
Reprodutibilidade(%)	1,71 (n=5)	2,24 (n = 5)	=

Os procedimentos eletroanalíticos propostos foram utilizados com sucesso para determinação de diquat em amostras complexas, tais como água de rio e amostras de alimentos "in natura", com excelente eficiência de recuperação, como pode ser visto na Tabela 2.

Tabela 2: Resultados obtidos das curvas de recuperação de *diquat* em amostras complexas.

Recuperação(%)	EAD	EDDB
Água de rio	115,7 ± 2,7	-
Batata	$86,0 \pm 3,4$	90,7 ± 3,2
Limão	-	107,8 ± 3,1
Laranja	-	91,7 ± 5,0

Conclusões

Os procedimentos desenvolvidos utilizando DAE e EDDB, aliados a VOQ, exibiram ótima sensibilidade, estabilidade, reprodutibilidade, sendo portando uma excelente alternativa para determinação de traços de *diquat* em amostras complexas, uma vez que apresentaram LD e LQ abaixo do máximo permitido pela legislação brasileira para amostras de alimentos (70 µg L⁻¹).

Agradecimentos

UFC, CNPq (processo 473470/2006-3) & FUNCAP (processo DCR-0039-1.06/09), FINEP.

Melo, L. C; Salazar-Banda, G. R.; Machado, S. A. S; Lima-Neto, P.; De Souza, D.; Correia, A. N.; Talanta 79 (2009) 1216.

^{2 -} Melo, L. C; Lima-Neto, P.; De Souza, D.; Correia, A. N.; Anal. Quim. Acta, submetido.