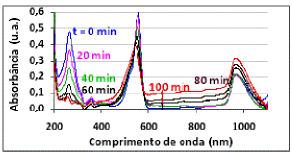
Utilização de esferas porosas de dióxido de titânio na decomposição fotocatalítica de corantes

Danielle Salsani de Oliveira Barros (IC)¹, Elizabeth Fátima de Souza (PQ)¹*

Faculdade de Química / CEATEC / PUC-Campinas. Rodovia Dom Pedro I, km 136, Parque das Universidades, 13086-900 - Campinas – SP.* e-mail: souzaef@puc-campinas.edu.br

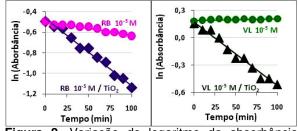
Palavras Chave: dióxido de titânio, processos de remediação, corantes.

Introdução


A contaminação de águas naturais é apontada como um grande problema ambiental. Corantes sintéticos lançados em cursos d'água por indústrias têxteis, de papel, couro e outras, sem tratamento prévio, contaminam mananciais. A fotodecomposição heterogênea sobre semicondutores (TiO₂, ZnO, SrO₃ e Fe₂O₃), que geram espécies altamente oxidantes, pode ser utilizada para a degradação de poluentes em meio aquoso. Semicondutores nanoparticulados apresentam alta eficiência pela grande área superficial disponível para as reações, mas dificultam a separação dos sólidos da fase aquosa. Esferas porosas de semicondutores podem facilitar a etapa de separação líquido/sólido, mantendo a eficiência catalítica.

Resultados e Discussão

Esferas porosas de dióxido de titânio (TiO₂, 0,15 a 0,31 mm de Ø) foram obtidas por hidrólise de tetraisopropóxido de titânio (Ti(OC₃H₇)₄) embebido em esferas de agarose previamente preparadas, seguida de calcinação a 450 °C, conforme Du et al. Testes catalíticos foram realizados com uma dispersão de 0,4 g.L⁻¹ de TiO₂ na solução aquosa 10⁻⁵ M do corante rodamina B (RB - C₂₈H₃₁N₂O₃Cl) ou verde brilhante de luxol (VL - C₅₂H₅₂N₅NaO₆S₂), a 25 °C, sob agitação e irradiação UV (lâmpada de vapor de Hg - 250 W). Durante a reação, amostras da dispersão foram coletadas e analisadas por espectrofotometria UV/vis (HP 8351), registrando-se os máximos de absorção em 550 (RB) ou 615 nm (VL). A constante de velocidade de pseudo-primeira ordem da reação de decomposição do corante (k_{exp}) foi obtida a partir do gráfico de logaritmo da absorbância versus tempo.


Sob irradiação UV, a concentração residual de rodamina B foi reduzida a 90% da inicial, após 100 minutos de reação. Na presença de esferas porosas de TiO₂, com o mesmo tempo de reação, a concentração do corante no meio aquoso foi reduzida a 40% da concentração inicial (Fig. 1). Os valores de k_{exp} obtidos para a degradação da RB a 25 °C, sob irradiação UV, com e sem TiO₂ foram, respectivamente, de 0,0065 e 0,0013 min⁻¹, o que corresponde a um fator catalítico de 5 (Fig.2). Os resultados obtidos para a RB com as esferas 33ª Reunião Anual da Sociedade Brasileira de Química

porosas de TiO_2 são similares aos obtidos por Soares *et al.*⁵ com 0,2 a 0,3 g.L⁻¹ de TiO_2 Degussa P-25, em temperaturas de 40 a 50 °C, de k_{exp} entre 0,0079 e 0,0097 min⁻¹, dependendo do pH do meio reacional.

Figura 1. Espectros UV/vis da solução 10^{-5} M de RB em diversos tempos, sob irradiação UV na presença de TiO₂ a 25 °C.

Já para a degradação do VL a 25 $^{\circ}$ C, sob irradiação UV, com e sem TiO₂, os valores de k_{exp} foram, respectivamente, de 0,0070 e 0,00009 min⁻¹, com um fator catalítico expressivo de 78. (Fig. 2).

Figura 2. Variação do logaritmo da absorbância versus tempo para soluções 10⁻⁵ M de RB ou VL, sob irradiação UV, sem e com TiO₂ no meio, a 25 °C.

Conclusões

A fotocatálise heterogênea em suspensão de esferas porosas de TiO₂ é uma alternativa promissora para tratamento de efluentes contaminados com corantes, propiciando uma maior facilidade operacional na separação sólido/líquido.

Agradecimentos

PIBIC/CNPq, PUC-Campinas.

¹ Clausen, D.N.; Takashima, K. Quim. Nova, 2007, 30, 1896.

² Cervantes, T.N.M. *et al. Quim. Nova*, **2009**, 32, 2423.

³ Wilhelma, P.; Stephan, D. J. Photochem. Photobiol. A, 2007, 185, 19.

⁴ Du, K.-F.; Yang, D; Sun, Y. Ind. Eng. Chem. Res., 2009, 48, 755.

⁵ Soares, E.T.; Lanzarin, M.A.; Moro, C.C., *Braz. J. Chem. Eng.*, **2007**, 24, 29.