Variabilidade altitudinal do aporte atmosférico de amônio, nitrato e nitrito em áreas com cobertura de Mata Atlântica na Serra dos Órgãos.

William Z. de Mello (PQ)¹, Patricia A. de Souza (PG)¹, Samara de A. Andrade (IC)*¹ samara.hand@ig.com.br

¹Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-150, Brasil. Palavras chave: Nitrogênio, aporte atmosférico

Introdução

As deposições atmosféricas constituem uma das sedimentáveis na ausência de chuvas).

Em um estudo em escala global, Fênix et al. (2006) verificaram que durante a década de 90 recebeu um aporte atmosférico de N entre 10-15 kg N respectivamente cargas acima de 10 e 15 kg N ha ¹ano⁻¹.

altitudes em áreas cobertas por Mata Atlântica.

A área de estudo deste trabalho compreende duas queima de biomassa local e de excreta de animais. altitudes do PARNASO (Parque Nacional da Serra dos Órgãos) localizado na Região Serrana do Estado do Rio de Janeiro; na Sede Guapimirim (abrev.: SG; 400 m altitude) e na Sede Teresópolis (abrev.: ST; ~ 980m de altitude). Em ambos os pontos de coleta foram instalados 1 coletor de deposição total (DT), que consiste de um funil de polietileno de 11,3 cm de diâmetro acoplado diretamente à tampa de um frasco de polietileno de 1L (figura 1).

As amostras foram filtradas em membrana de acetato de celulose de 0,22µm de diâmetro de poro. O NH₄⁺ foi analisado pelo método de azul de indofenol. O NO₂ foi determinado pelo método de diazotação de sulfanilamida com dicloreto de N-(1naftil)-etilenodiamida e o NO₃ por cromatografia iônica com detector condutimétrico.

Figura 1. Esquema ilustrativo do coletor de deposição total (DT)

Resultados e Discussão

As coletas de DT foram realizadas entre agosto de principais vias de ciclagem e redistribuição de vários 2008 e agosto de 2009 em intervalos de sete dias.Os elementos químicos sobre a superfície do planeta. A resultados são preliminares e referem-se ao período de deposição total consiste na combinação entre as duas cinco meses de monitoramento. Durante o período de formas de transferência de partículas da atmosfera estudo a precipitação acumulada foi de 540 mm na ST para as diversas superfícies da terra, a deposição e de 585 mm na SG. Os fluxos médios de NH₄⁺, NO₂ e úmida (chuva) e deposição seca (arraste de partículas NO₃ foram respectivamente iguais a 1,92, 0,02 e 1,24 mol ha⁻¹dia⁻¹ para ST; e de 3,70, 0,02 e 1,43 mol ha⁻¹ ¹dia⁻¹ para SG. De forma geral, os fluxos (mol ha⁻¹dia⁻¹) de NH₄⁺ e NO₃ foram maiores na SG em relação à ST. aproximadamente 32% da área da Floresta Atlântica A deposição de NO₃ e de NH₄ foram respectivamente iguais 1,2 e 2 vezes maiores na SG em relação a ST. ha¹ano¹ e é previsto que em meados do século XXI Em todos os casos NH₄⁺ apresentou maior e o NO₂ cerca de 68% a 95% da Floresta Atlântica recebam menor contribuição (<1%) das espécies nitrogenadas em ambas altitudes.

O NO₃ contribuiu de 30 a 40% do NID na Região O objetivo desse estudo é determinar a Serrana (Figura 2). Este comportamento esta variabilidade da deposição atmosférica de nitrogênio possivelmente relacionada com o transporte à longa inorgânico (Abrev.: NID, soma de NH₄⁺, NO₃ e NO₂) distância de aerossóis de sais de NH4+ originados em amostras de deposição total (DT) em duas antropicamente na Região Metropolitana do Rio de Janeiro (RMRJ) E Baía de Guanabara, bem como, da

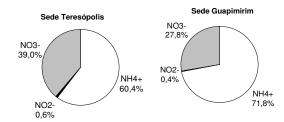


Figura 2. Contribuição percentual de nitrogênio inorgânico na Deposição Total (DT) na Sede Teresópolis (ST) e na Sede Guapimirim (SG).

Conclusões

A variabilidade da precipitação entre as diferentes altitudes pode ser responsável pelo comportamento dos fluxos dos íons NH₄⁺, NO₃ e NO₂ na DT, além de outros fatores como o transporte de poluentes originados da RMRJ para a Região Serrana uma vez que os ventos predominantes são do quadrante sul.

Agradecimentos

Ao CNPq pelo financiamento.

de Mello, W. Z., 2001. Precipitation chemistry in the coast of the Metropolitan Region of Rio de Janeiro, Brazil. Environmental Pollution, 114,

^{235-242. &}lt;sup>2</sup> de Souza, P. A., de Mello, W. Z., Maldonado, J., Evangelista, H., 2006. Composição química da chuva e aporte atmosférico na Ilha Grande, RJ. Química Nova, 29(3), 471-476