AVALIAÇÃO DA POTENCIALIDADE DOS ELETRODOS AUDTDPA E AUMMB NO ESTUDO ELETROQUÍMICO DE 4-NITROFENOL

Keity M. Doretto (PG)², Rafaela Ferreira França (PG)¹, Hueder P. M. de Oliveira (PQ)¹, Susanne Rath (PQ)², Lucia Codognoto (PQ)¹.

¹ Universidade Camilo Castelo Branco, Núcleo do Parque Tecnológico de São José dos Campos, Rod. Presidente Dutra Km 138, CEP 12247-004, São José dos Campos- SP, Brasil, *luciacodognoto@hotmail.com. ² Instituto de Química – Universidade Estadual de Campinas – UNICAMP

Palavras Chave: monocamadas auto-organizadas, eletrodos de ouro, 4-Nitrofenol

Introdução

Existe disponibilidade de uma grande variedade de materiais eletródicos que podem ser empregados na determinação eletroquímica de compostos diversos. Entre esses, os eletrodos de ouro modificados por monocamadas auto-organizadas tem se destacado por apresentarem propriedades importantes, como por exemplo, a redução da corrente capacitiva e da acumulação de espécies indesejadas sobre a superfície do eletrodo, evitando assim a passivação da superfície de eletrodos sólidos¹.

Desta forma, objetivo deste trabalho foi o desenvolvimento e caracterização de eletrodos modificados por meio de monocamadas autoorganizadas de ácido ditiodipropiônico (DTDPA) e 2-mercapto-5-metil-benzimidazol (MMB) e, a avaliação da potencialidade destes no estudo eletroquímico de 4-nitrofenol (4-NP).

Resultados e Discussão

Os eletrodos de ouro foram modificados com os tióis 2-mercapto-5-metil-benzimidazol (AuMMB) e ácido ditiodipropiônico (AuDTDPA), pela imersão do eletrodos de ouro nas respectivas soluções dos tióis na concentração de 1,0x10⁻² mol L⁻¹.

Os eletrodos modificados foram caracterizados utilizando-se a espectroscopia de impedância eletroquímica e voltametria cíclica. As áreas recobertas calculadas a partir dos dados de impedância eletroquímica para os eletrodos de AuDTDPA e AuMMB foram de 52% e 80%, respectivamente.

Após a caracterização, os eletrodos foram empregados no estudo eletroquímico do 4-NP. Na Figura 1 encontram-se os voltamogramas cíclicos obtidos para o 4-NP sobre os diferentes eletrodos em hidrogenofosfato de sódio, pH 5. O 4-NP, sobre o eletrodo Au, apresentou um pico catódico em torno de -0.44 V, seguido de um par redox com potencial formal em torno de 0,23 V. No eletrodo AuDTDPA os potenciais de pico foram deslocados para -0,29 V (pico catódico) e 0,27 V (par redox), com intensidade de corrente menor, indicando a modificação da superfície do eletrodo de Au com o DTDPA. Nestas condições, o DTDPA está desprotonado facilitando a interação do 4-NP com a superfície eletródica. Sobre o eletrodo AuMMB os resultados foram semelhantes com um pico catódico em torno de -0,35 V e o par redox, referente a oxidação do derivado hidroxilamina para nitroso, em um potencial formal de 0,25 V.

Os resultados em termos de potencial e corrente de pico (sinal de redução do 4-NP) estão sumarizados na **Tabela 1.**

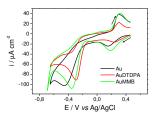


Figura 1 - Voltamogramas cíclicos para 4-NP na concentração de $5.0x10^{-4}$ mol L $^{-1}$ sobre os eletrodos de Au, AuDTDPA e AuMMB (Na₂HPO₄ 0,10 mol L $^{-1}$, pH = 5,0 e ν = 100 mV s $^{-1}$).

Tabela 1 - Resultados obtidos para o 4-NP sobre os eletrodos Au, AuDTDPA e AuMMB

Eletrodo	E _p / mV	ΔE _p / mV (diferença de potencial em relação ao eletrodo de Au)	i / μA cm ⁻²
Au	-0,44	-	37,7
AuDTDPA	-0,29	150	59,9
AuMMB	-0,35	90	69,5

Observa-se que em termos de potencial de pico o eletrodo AuDTDPA é mais interessante para a determinação eletroanalítica do 4-NP do que os demais, já que nas condições estudadas sofre redução em menor potencial. Ainda, estudos preliminares. indicaram a possibilidade determinação do 4-NP na presença do agrotóxico organofosforado fenitrotiona, sem a passivação da superfície eletródica após sucessivas determinações. O 4-NP apresentou maior corrente de pico catódica com o eletrodo AuMMB. Estes resultados indicam que as moléculas de MMB presentes na superfície do eletrodo podem contribuir para a solubilidade do 4-NP na interface eletrodosolução, já que o MMB, nestas condições, encontrase na forma neutra.

Conclusões

Os resultados são promissores e indicam a possibilidade de aplicação dos eletrodos AuDTDPA e AuMMB na quantificação de 4-NP em potenciais de pico menos negativos do que o observado com o eletrodo de ouro liso, sem que ocorra a passivação da superficie eletródica.

Agradecimentos

À FAPESP (proc. No. 08/50588-6) e ao CNPq (proc. No. 308050/2008-8).

Mirsky, V. M.; Trends in Anal. Chem., 2002, 21, 439.